短期控制热泵以支持电网运行

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-10-28 DOI:10.1109/OJIES.2024.3486560
Diran Liu;Daniele Carta;André Xhonneux;Dirk Müller;Andrea Benigni
{"title":"短期控制热泵以支持电网运行","authors":"Diran Liu;Daniele Carta;André Xhonneux;Dirk Müller;Andrea Benigni","doi":"10.1109/OJIES.2024.3486560","DOIUrl":null,"url":null,"abstract":"The increasing adoption of heat pumps presents new challenges for power grids, including the potential overloading of transformers and cables. To address this issue, in this work, a model predictive control for a low-temperature district heating network is proposed to prevent the overloading of transformers and cables. A comprehensive control strategy that considers various factors influencing the flexibility of heat pumps is introduced. The considered factors include integrating distributed energy resources (DER) such as a photovoltaic system, a battery energy storage system, and flexible indoor temperatures. The control mechanism is validated through a hardware-in-the-loop cosimulation setup, ensuring practical applicability and operational feasibility. The results indicate that with the proposed control, the power consumption of the heat pumps is reduced to alleviate overloading issues. To meet the power consumption constraints imposed on the heat pumps the gas usage by the heating grid would increase up to 506% of the level in the case without power constraints. However, by integrating DERs, along with leveraging the flexibility in indoor temperature, this additional gas usage is limited to 135%.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1221-1238"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736978","citationCount":"0","resultStr":"{\"title\":\"Short-Term Control of Heat Pumps to Support Power Grid Operation\",\"authors\":\"Diran Liu;Daniele Carta;André Xhonneux;Dirk Müller;Andrea Benigni\",\"doi\":\"10.1109/OJIES.2024.3486560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing adoption of heat pumps presents new challenges for power grids, including the potential overloading of transformers and cables. To address this issue, in this work, a model predictive control for a low-temperature district heating network is proposed to prevent the overloading of transformers and cables. A comprehensive control strategy that considers various factors influencing the flexibility of heat pumps is introduced. The considered factors include integrating distributed energy resources (DER) such as a photovoltaic system, a battery energy storage system, and flexible indoor temperatures. The control mechanism is validated through a hardware-in-the-loop cosimulation setup, ensuring practical applicability and operational feasibility. The results indicate that with the proposed control, the power consumption of the heat pumps is reduced to alleviate overloading issues. To meet the power consumption constraints imposed on the heat pumps the gas usage by the heating grid would increase up to 506% of the level in the case without power constraints. However, by integrating DERs, along with leveraging the flexibility in indoor temperature, this additional gas usage is limited to 135%.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"1221-1238\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736978\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736978/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10736978/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

越来越多地采用热泵给电网带来了新的挑战,包括变压器和电缆可能过载。为解决这一问题,本研究提出了一种低温区域供热网络的模型预测控制方法,以防止变压器和电缆过载。文中介绍了一种综合控制策略,该策略考虑了影响热泵灵活性的各种因素。考虑的因素包括整合分布式能源资源(DER),如光伏系统、电池储能系统和灵活的室内温度。通过硬件在环协同仿真设置对控制机制进行了验证,以确保实际适用性和操作可行性。结果表明,采用所提出的控制方法,热泵的功耗得以降低,从而缓解了过载问题。为了满足对热泵施加的功率消耗限制,供热电网的天然气用量将增加到无功率限制情况下的 506%。然而,通过整合 DER 以及利用室内温度的灵活性,额外的天然气用量被限制在 135%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-Term Control of Heat Pumps to Support Power Grid Operation
The increasing adoption of heat pumps presents new challenges for power grids, including the potential overloading of transformers and cables. To address this issue, in this work, a model predictive control for a low-temperature district heating network is proposed to prevent the overloading of transformers and cables. A comprehensive control strategy that considers various factors influencing the flexibility of heat pumps is introduced. The considered factors include integrating distributed energy resources (DER) such as a photovoltaic system, a battery energy storage system, and flexible indoor temperatures. The control mechanism is validated through a hardware-in-the-loop cosimulation setup, ensuring practical applicability and operational feasibility. The results indicate that with the proposed control, the power consumption of the heat pumps is reduced to alleviate overloading issues. To meet the power consumption constraints imposed on the heat pumps the gas usage by the heating grid would increase up to 506% of the level in the case without power constraints. However, by integrating DERs, along with leveraging the flexibility in indoor temperature, this additional gas usage is limited to 135%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Short-Term Control of Heat Pumps to Support Power Grid Operation Effects of Grid Voltage and Load Unbalances on the Efficiency of a Hybrid Distribution Transformer Enhanced PI Control Based SHC-PWM Strategy for Active Power Filters A Detailed Study on Algorithms for Predictive Maintenance in Smart Manufacturing: Chip Form Classification Using Edge Machine Learning Design and Evaluation of a Voice-Controlled Elevator System to Improve the Safety and Accessibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1