{"title":"基于深度稀疏自动编码器的群落检测和相互依存基础设施网络的弹性分析","authors":"Shuliang Wang, Jin Wang, Shengyang Luan, Bo Song","doi":"10.1016/j.chaos.2024.115720","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the global information of nodes and constructs a similarity matrix based on s-hop counts. It effectively extracts low-dimensional feature matrices from high-dimensional data to achieve community detection results by utilizing deep learning techniques and deep sparse autoencoders. We successfully detect communities and identify critical inter-community edges. Additionally, we delve into the influence of vulnerable inter-community edges on the resilience of interdependent networks. To illustrate this, a widely employed artificial interdependent power-communication network is adopted as a case study, examining various failure intensities and coupling modes. This approach allows visualization communities, and the impact of vulnerable edges on the interdependent network's resilience is investigated from both structural and functional perspectives. Results have shown that damage to edges bridging different communities can lead to severe network vulnerability. Accordingly, prioritizing the security of these edges will strengthen the network's resilience, which is crucial for preventing further network damage.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115720"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep sparse autoencoders-based community detection and resilience analysis of interdependent infrastructure networks\",\"authors\":\"Shuliang Wang, Jin Wang, Shengyang Luan, Bo Song\",\"doi\":\"10.1016/j.chaos.2024.115720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers the global information of nodes and constructs a similarity matrix based on s-hop counts. It effectively extracts low-dimensional feature matrices from high-dimensional data to achieve community detection results by utilizing deep learning techniques and deep sparse autoencoders. We successfully detect communities and identify critical inter-community edges. Additionally, we delve into the influence of vulnerable inter-community edges on the resilience of interdependent networks. To illustrate this, a widely employed artificial interdependent power-communication network is adopted as a case study, examining various failure intensities and coupling modes. This approach allows visualization communities, and the impact of vulnerable edges on the interdependent network's resilience is investigated from both structural and functional perspectives. Results have shown that damage to edges bridging different communities can lead to severe network vulnerability. Accordingly, prioritizing the security of these edges will strengthen the network's resilience, which is crucial for preventing further network damage.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115720\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012724\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012724","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep sparse autoencoders-based community detection and resilience analysis of interdependent infrastructure networks
This paper considers the global information of nodes and constructs a similarity matrix based on s-hop counts. It effectively extracts low-dimensional feature matrices from high-dimensional data to achieve community detection results by utilizing deep learning techniques and deep sparse autoencoders. We successfully detect communities and identify critical inter-community edges. Additionally, we delve into the influence of vulnerable inter-community edges on the resilience of interdependent networks. To illustrate this, a widely employed artificial interdependent power-communication network is adopted as a case study, examining various failure intensities and coupling modes. This approach allows visualization communities, and the impact of vulnerable edges on the interdependent network's resilience is investigated from both structural and functional perspectives. Results have shown that damage to edges bridging different communities can lead to severe network vulnerability. Accordingly, prioritizing the security of these edges will strengthen the network's resilience, which is crucial for preventing further network damage.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.