Dayeon Yu , Suhyeon Ahn , Sangwook Youn , Jinwoo Park , Hyungjin Kim
{"title":"使用具有变化容差的忆阻器随机噪声信号的真随机数发生器","authors":"Dayeon Yu , Suhyeon Ahn , Sangwook Youn , Jinwoo Park , Hyungjin Kim","doi":"10.1016/j.chaos.2024.115708","DOIUrl":null,"url":null,"abstract":"<div><div>Memristors are suitable for internet of things (IoT) edge devices due to their high scalability and low power consumption. Also, their stochastic noise signals can be used to produce entropy sources for information encryption in edge devices, which is essential during data exchange. Random telegraph noise (RTN) in memristors is a current fluctuation that occurs when electrons are captured or emitted from a trap, and its stochastic characteristics can be used as an entropy source for a true random number generator (TRNG). However, post-processing is essential because RTN tends to be biased toward specific time constants, and there is significant variation within each time constant. In this work, we present a TRNG circuit that can tolerate the time variation of RTN and demonstrate experimental results with a breadboard. The dependence of RTN signals on a read voltage is statistically verified, confirming a significant variation in a time constant of RTN signal (σ/μ > 700 %). Despite this variation, high randomness of generated random number stream can be obtained by a falling edge detector and is verified by NIST SP 800–22 test (with >14 tests passed) and auto-correlation function test (rate of exceeding confidence bound <1.5 %).</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115708"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"True random number generator using stochastic noise signal of memristor with variation tolerance\",\"authors\":\"Dayeon Yu , Suhyeon Ahn , Sangwook Youn , Jinwoo Park , Hyungjin Kim\",\"doi\":\"10.1016/j.chaos.2024.115708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Memristors are suitable for internet of things (IoT) edge devices due to their high scalability and low power consumption. Also, their stochastic noise signals can be used to produce entropy sources for information encryption in edge devices, which is essential during data exchange. Random telegraph noise (RTN) in memristors is a current fluctuation that occurs when electrons are captured or emitted from a trap, and its stochastic characteristics can be used as an entropy source for a true random number generator (TRNG). However, post-processing is essential because RTN tends to be biased toward specific time constants, and there is significant variation within each time constant. In this work, we present a TRNG circuit that can tolerate the time variation of RTN and demonstrate experimental results with a breadboard. The dependence of RTN signals on a read voltage is statistically verified, confirming a significant variation in a time constant of RTN signal (σ/μ > 700 %). Despite this variation, high randomness of generated random number stream can be obtained by a falling edge detector and is verified by NIST SP 800–22 test (with >14 tests passed) and auto-correlation function test (rate of exceeding confidence bound <1.5 %).</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115708\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012608\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012608","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
True random number generator using stochastic noise signal of memristor with variation tolerance
Memristors are suitable for internet of things (IoT) edge devices due to their high scalability and low power consumption. Also, their stochastic noise signals can be used to produce entropy sources for information encryption in edge devices, which is essential during data exchange. Random telegraph noise (RTN) in memristors is a current fluctuation that occurs when electrons are captured or emitted from a trap, and its stochastic characteristics can be used as an entropy source for a true random number generator (TRNG). However, post-processing is essential because RTN tends to be biased toward specific time constants, and there is significant variation within each time constant. In this work, we present a TRNG circuit that can tolerate the time variation of RTN and demonstrate experimental results with a breadboard. The dependence of RTN signals on a read voltage is statistically verified, confirming a significant variation in a time constant of RTN signal (σ/μ > 700 %). Despite this variation, high randomness of generated random number stream can be obtained by a falling edge detector and is verified by NIST SP 800–22 test (with >14 tests passed) and auto-correlation function test (rate of exceeding confidence bound <1.5 %).
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.