{"title":"使用法线边界交叉法对帆船的附属装置进行多目标优化","authors":"Daniele Peri","doi":"10.1016/j.matcom.2024.10.041","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a multidisciplinary design optimization algorithm, the Normal Boundary Intersection (NBI) method, is applied to the design of some devices of a sailing yacht. The full Pareto front is identified for two different design problems, and the optimal configurations are compared with standard devices. The great efficiency of the optimization algorithm is demonstrated by the wideness and density of the identified Pareto front.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"229 ","pages":"Pages 885-895"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of the appendages of a sailing yacht using the Normal Boundary Intersection method\",\"authors\":\"Daniele Peri\",\"doi\":\"10.1016/j.matcom.2024.10.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a multidisciplinary design optimization algorithm, the Normal Boundary Intersection (NBI) method, is applied to the design of some devices of a sailing yacht. The full Pareto front is identified for two different design problems, and the optimal configurations are compared with standard devices. The great efficiency of the optimization algorithm is demonstrated by the wideness and density of the identified Pareto front.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"229 \",\"pages\":\"Pages 885-895\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004397\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004397","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-objective optimization of the appendages of a sailing yacht using the Normal Boundary Intersection method
In this paper, a multidisciplinary design optimization algorithm, the Normal Boundary Intersection (NBI) method, is applied to the design of some devices of a sailing yacht. The full Pareto front is identified for two different design problems, and the optimal configurations are compared with standard devices. The great efficiency of the optimization algorithm is demonstrated by the wideness and density of the identified Pareto front.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.