Zhi Sun , Jinglei Zhao , Chunlin Zhang, Shujin Yuan, Jun Luo, Huayan Pu
{"title":"新型磁性电抗器吸收器在冲击负荷下的研究","authors":"Zhi Sun , Jinglei Zhao , Chunlin Zhang, Shujin Yuan, Jun Luo, Huayan Pu","doi":"10.1016/j.jsv.2024.118793","DOIUrl":null,"url":null,"abstract":"<div><div>Inerter-based absorbers have proven exceptionally effective in dampening vibrations within a specific low-frequency range, thus finding widespread application in engineering. However, their performance under shock loads poses a more intricate challenge, demanding the development of structures that can encompass a broader spectrum of vibration reduction frequencies. This paper introduces the magnetic inerter shock absorber (MISA), a groundbreaking approach that addresses this challenge. The cornerstone of the MISA lies in the ingenious linkage of its additional mass to the base. This design minimizes the influence on the payload while achieving an astounding amplification factor of thousands. Once integrated into a single-degree-of-freedom system, comprehensive nonlinear motion differential equations are formulated to capture the dynamics triggered by shock loads. Utilizing Fourier analysis, the shock loads are decomposed, and the harmonic balance method is employed to obtain the analytical structure of the system. Following this, numerical solutions are derived via the shock alternating frequency time method, providing insight into the ultimate dynamic response. The results demonstrate that the MISA swiftly suppresses residual vibrations while attenuating transient responses. Finally, an experimental verification confirms the MISA’s ability to reduce shock vibrations. This work not only introduces a novel solution for mitigating the shocks of transient vibrations and residual oscillations induced by shock loads, but also provides guidance for implementing advanced vibration control by adjusting the rotational damping ratio.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"597 ","pages":"Article 118793"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a novel magnetic inerter-based absorber under shock load\",\"authors\":\"Zhi Sun , Jinglei Zhao , Chunlin Zhang, Shujin Yuan, Jun Luo, Huayan Pu\",\"doi\":\"10.1016/j.jsv.2024.118793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inerter-based absorbers have proven exceptionally effective in dampening vibrations within a specific low-frequency range, thus finding widespread application in engineering. However, their performance under shock loads poses a more intricate challenge, demanding the development of structures that can encompass a broader spectrum of vibration reduction frequencies. This paper introduces the magnetic inerter shock absorber (MISA), a groundbreaking approach that addresses this challenge. The cornerstone of the MISA lies in the ingenious linkage of its additional mass to the base. This design minimizes the influence on the payload while achieving an astounding amplification factor of thousands. Once integrated into a single-degree-of-freedom system, comprehensive nonlinear motion differential equations are formulated to capture the dynamics triggered by shock loads. Utilizing Fourier analysis, the shock loads are decomposed, and the harmonic balance method is employed to obtain the analytical structure of the system. Following this, numerical solutions are derived via the shock alternating frequency time method, providing insight into the ultimate dynamic response. The results demonstrate that the MISA swiftly suppresses residual vibrations while attenuating transient responses. Finally, an experimental verification confirms the MISA’s ability to reduce shock vibrations. This work not only introduces a novel solution for mitigating the shocks of transient vibrations and residual oscillations induced by shock loads, but also provides guidance for implementing advanced vibration control by adjusting the rotational damping ratio.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"597 \",\"pages\":\"Article 118793\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24005558\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005558","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Investigation of a novel magnetic inerter-based absorber under shock load
Inerter-based absorbers have proven exceptionally effective in dampening vibrations within a specific low-frequency range, thus finding widespread application in engineering. However, their performance under shock loads poses a more intricate challenge, demanding the development of structures that can encompass a broader spectrum of vibration reduction frequencies. This paper introduces the magnetic inerter shock absorber (MISA), a groundbreaking approach that addresses this challenge. The cornerstone of the MISA lies in the ingenious linkage of its additional mass to the base. This design minimizes the influence on the payload while achieving an astounding amplification factor of thousands. Once integrated into a single-degree-of-freedom system, comprehensive nonlinear motion differential equations are formulated to capture the dynamics triggered by shock loads. Utilizing Fourier analysis, the shock loads are decomposed, and the harmonic balance method is employed to obtain the analytical structure of the system. Following this, numerical solutions are derived via the shock alternating frequency time method, providing insight into the ultimate dynamic response. The results demonstrate that the MISA swiftly suppresses residual vibrations while attenuating transient responses. Finally, an experimental verification confirms the MISA’s ability to reduce shock vibrations. This work not only introduces a novel solution for mitigating the shocks of transient vibrations and residual oscillations induced by shock loads, but also provides guidance for implementing advanced vibration control by adjusting the rotational damping ratio.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.