研究转向预览方法,以改进具有实际执行器延迟的越野车预测控制方法

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Journal of Terramechanics Pub Date : 2024-11-14 DOI:10.1016/j.jterra.2024.101027
Andries J. Peenze, P. Schalk Els
{"title":"研究转向预览方法,以改进具有实际执行器延迟的越野车预测控制方法","authors":"Andries J. Peenze,&nbsp;P. Schalk Els","doi":"10.1016/j.jterra.2024.101027","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates improvements that can be made to predictive control methods for off-road vehicles by adding of realistic steering preview. The objective of this study is to improve the performance and efficacy of predictive controllers by accounting for significant time delays in active and semi-active systems on vehicles. Traditional zero-order and first-order hold methods for steer preview are compared to a more realistic steer preview method. Semi-active suspension, rear wheel steering, and individual brake actuation are used as the actuators on this off-road vehicle. The results show that the addition of a realistic steering preview improves the handling performance of the vehicle in a severe double lane change manoeuvre on rough roads. Up to 10% reduction in roll angle can be achieved with semi-active suspension control. A 34% reduction in side-slip angle is possible with rear wheel steering control and a 15% reduction in side-slip angle is achieved with differential braking control. The controllers can pre-empt and consider the effect of the actuator time delays, and the preview states from the predictive controller are more representative over the prediction horizon. The findings suggest that the addition of a realistic steering preview can improve the performance of predictive controllers on vehicles. Further investigation of other disturbances and their preview effects on the system should be conducted to find further improvements for predictive control strategies on vehicles.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101027"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of steer preview methods to improve predictive control methods on off-road vehicles with realistic actuator delays\",\"authors\":\"Andries J. Peenze,&nbsp;P. Schalk Els\",\"doi\":\"10.1016/j.jterra.2024.101027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates improvements that can be made to predictive control methods for off-road vehicles by adding of realistic steering preview. The objective of this study is to improve the performance and efficacy of predictive controllers by accounting for significant time delays in active and semi-active systems on vehicles. Traditional zero-order and first-order hold methods for steer preview are compared to a more realistic steer preview method. Semi-active suspension, rear wheel steering, and individual brake actuation are used as the actuators on this off-road vehicle. The results show that the addition of a realistic steering preview improves the handling performance of the vehicle in a severe double lane change manoeuvre on rough roads. Up to 10% reduction in roll angle can be achieved with semi-active suspension control. A 34% reduction in side-slip angle is possible with rear wheel steering control and a 15% reduction in side-slip angle is achieved with differential braking control. The controllers can pre-empt and consider the effect of the actuator time delays, and the preview states from the predictive controller are more representative over the prediction horizon. The findings suggest that the addition of a realistic steering preview can improve the performance of predictive controllers on vehicles. Further investigation of other disturbances and their preview effects on the system should be conducted to find further improvements for predictive control strategies on vehicles.</div></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"117 \",\"pages\":\"Article 101027\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000697\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000697","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了通过添加真实转向预览来改进越野车预测控制方法的可能性。本研究的目的是通过考虑车辆主动和半主动系统中的重大时间延迟,提高预测控制器的性能和功效。将用于转向预览的传统零阶和一阶保持方法与更逼真的转向预览方法进行了比较。半主动悬架、后轮转向和单独的制动装置被用作该越野车的执行器。结果表明,在崎岖路面上进行严重的双车道变道操作时,增加真实的转向预览可提高车辆的操控性能。通过半主动悬架控制,侧倾角最多可减少 10%。通过后轮转向控制可将侧滑角减少 34%,通过差速制动控制可将侧滑角减少 15%。控制器可以预先考虑执行器时间延迟的影响,而且预测控制器的预览状态在预测范围内更具代表性。研究结果表明,增加现实的转向预览可以提高车辆预测控制器的性能。应进一步研究其他干扰及其对系统的预览影响,以进一步改进车辆的预测控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of steer preview methods to improve predictive control methods on off-road vehicles with realistic actuator delays
This paper investigates improvements that can be made to predictive control methods for off-road vehicles by adding of realistic steering preview. The objective of this study is to improve the performance and efficacy of predictive controllers by accounting for significant time delays in active and semi-active systems on vehicles. Traditional zero-order and first-order hold methods for steer preview are compared to a more realistic steer preview method. Semi-active suspension, rear wheel steering, and individual brake actuation are used as the actuators on this off-road vehicle. The results show that the addition of a realistic steering preview improves the handling performance of the vehicle in a severe double lane change manoeuvre on rough roads. Up to 10% reduction in roll angle can be achieved with semi-active suspension control. A 34% reduction in side-slip angle is possible with rear wheel steering control and a 15% reduction in side-slip angle is achieved with differential braking control. The controllers can pre-empt and consider the effect of the actuator time delays, and the preview states from the predictive controller are more representative over the prediction horizon. The findings suggest that the addition of a realistic steering preview can improve the performance of predictive controllers on vehicles. Further investigation of other disturbances and their preview effects on the system should be conducted to find further improvements for predictive control strategies on vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
期刊最新文献
Acoustic winter terrain classification for offroad autonomous vehicles Investigation of steer preview methods to improve predictive control methods on off-road vehicles with realistic actuator delays Comparison of selected tire-terrain interaction models from the aspect of accuracy and computational intensity Simulation of cohesive-frictional artificial soil-to-blade interactions using an elasto-plastic discrete element model with stress-dependent cohesion Modelling and simulation fundamentals in design for ground vehicle mobility Part II: Western approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1