WeiWei Xie , ChaoLing Du , YiHan Ding , XiaoYang Zhang , YangMao Luo , SiHao Xia , ShuiYan Cao
{"title":"以 Cu2O 为空穴传输层、Cu2MoSnS4 为吸收层的异质结太阳能电池性能的数值研究","authors":"WeiWei Xie , ChaoLing Du , YiHan Ding , XiaoYang Zhang , YangMao Luo , SiHao Xia , ShuiYan Cao","doi":"10.1016/j.physleta.2024.130029","DOIUrl":null,"url":null,"abstract":"<div><div>Cu<sub>2</sub>MoSnS<sub>4</sub> (CCTS) is well suited as the absorption layer for solar cell due to its high absorption coefficient, suitable optical bandgap, and good stability. In this study, a novel CCTS-based solar cell with the structure of FTO/ZnO:Al/Ag<sub>2</sub>S/CCTS/Cu<sub>2</sub>O/C was proposed by setting Cu<sub>2</sub>O as the hole transport layer (HTL) to boost the photovoltaic (PV) efficiency. A comparative numerical study of its PV performance with that of the reference counterpart was performed by employing the software SCAPS, which demonstrates its obvious advantage. It was also numerically optimized by tuning the geometry and optoelectronic parameters. The optimized power conversion efficiency (PCE) was revealed to reach 26.27 %, getting 135 % improvement compared with that of the reference counterpart. It demonstrates that the proposed CCTS heterojunction solar cell with Cu<sub>2</sub>O as the HTL boosts the efficiency of CCTS-based solar cells and provide new clues for future CCTS solar cell design and application.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130029"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on the performance of heterojunction solar cells with Cu2O as the hole transport layer and Cu2MoSnS4 as the absorption layer\",\"authors\":\"WeiWei Xie , ChaoLing Du , YiHan Ding , XiaoYang Zhang , YangMao Luo , SiHao Xia , ShuiYan Cao\",\"doi\":\"10.1016/j.physleta.2024.130029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cu<sub>2</sub>MoSnS<sub>4</sub> (CCTS) is well suited as the absorption layer for solar cell due to its high absorption coefficient, suitable optical bandgap, and good stability. In this study, a novel CCTS-based solar cell with the structure of FTO/ZnO:Al/Ag<sub>2</sub>S/CCTS/Cu<sub>2</sub>O/C was proposed by setting Cu<sub>2</sub>O as the hole transport layer (HTL) to boost the photovoltaic (PV) efficiency. A comparative numerical study of its PV performance with that of the reference counterpart was performed by employing the software SCAPS, which demonstrates its obvious advantage. It was also numerically optimized by tuning the geometry and optoelectronic parameters. The optimized power conversion efficiency (PCE) was revealed to reach 26.27 %, getting 135 % improvement compared with that of the reference counterpart. It demonstrates that the proposed CCTS heterojunction solar cell with Cu<sub>2</sub>O as the HTL boosts the efficiency of CCTS-based solar cells and provide new clues for future CCTS solar cell design and application.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"528 \",\"pages\":\"Article 130029\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124007230\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007230","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical investigation on the performance of heterojunction solar cells with Cu2O as the hole transport layer and Cu2MoSnS4 as the absorption layer
Cu2MoSnS4 (CCTS) is well suited as the absorption layer for solar cell due to its high absorption coefficient, suitable optical bandgap, and good stability. In this study, a novel CCTS-based solar cell with the structure of FTO/ZnO:Al/Ag2S/CCTS/Cu2O/C was proposed by setting Cu2O as the hole transport layer (HTL) to boost the photovoltaic (PV) efficiency. A comparative numerical study of its PV performance with that of the reference counterpart was performed by employing the software SCAPS, which demonstrates its obvious advantage. It was also numerically optimized by tuning the geometry and optoelectronic parameters. The optimized power conversion efficiency (PCE) was revealed to reach 26.27 %, getting 135 % improvement compared with that of the reference counterpart. It demonstrates that the proposed CCTS heterojunction solar cell with Cu2O as the HTL boosts the efficiency of CCTS-based solar cells and provide new clues for future CCTS solar cell design and application.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.