{"title":"优化收紧 KWW 联合置信区的排序","authors":"Tommy Wright","doi":"10.1016/j.spl.2024.110288","DOIUrl":null,"url":null,"abstract":"<div><div>Klein, Wright, and Wieczorek (2020), hereafter KWW, constructs a simple novel measure of uncertainty for an estimated ranking using a joint confidence region for the true ranking of <span><math><mi>K</mi></math></span> populations. In this current paper, our proposed framework permits some control over the amount of uncertainty and tightness in various portions of the estimated ranking with an optimal allocation of sample among the <span><math><mi>K</mi></math></span> populations.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110288"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal tightening of the KWW joint confidence region for a ranking\",\"authors\":\"Tommy Wright\",\"doi\":\"10.1016/j.spl.2024.110288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Klein, Wright, and Wieczorek (2020), hereafter KWW, constructs a simple novel measure of uncertainty for an estimated ranking using a joint confidence region for the true ranking of <span><math><mi>K</mi></math></span> populations. In this current paper, our proposed framework permits some control over the amount of uncertainty and tightness in various portions of the estimated ranking with an optimal allocation of sample among the <span><math><mi>K</mi></math></span> populations.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"217 \",\"pages\":\"Article 110288\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002578\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002578","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
Klein、Wright 和 Wieczorek(2020 年)(以下简称 KWW)利用 K 种群真实排名的联合置信区域,为估计排名构建了一个简单的新型不确定性度量。在本文中,我们提出的框架允许通过在 K 个种群中优化样本分配,对估计排名各部分的不确定性和严密性进行一定程度的控制。
Optimal tightening of the KWW joint confidence region for a ranking
Klein, Wright, and Wieczorek (2020), hereafter KWW, constructs a simple novel measure of uncertainty for an estimated ranking using a joint confidence region for the true ranking of populations. In this current paper, our proposed framework permits some control over the amount of uncertainty and tightness in various portions of the estimated ranking with an optimal allocation of sample among the populations.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.