{"title":"用于硅基全固态电池的 Li7P3S11 双层电解质:界面掺杂SiS2","authors":"Nantao Chen, Huiyao Li, Youlan Zou, Zhuoran Ao, Peiguang Li, Yinan Lao, Yu Wan","doi":"10.1016/j.materresbull.2024.113179","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS<sub>2</sub>-doping Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> (LPS-<em>x</em>Si) membrane sandwiched between Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-<em>x</em>Si|LPS). LPS-<em>x</em>Si|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li<sup>+</sup> transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 ℃ with 0.1 mA cm<sup>−2</sup>. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g<sup>−1</sup> and remains 339.5 mAh g<sup>−1</sup> after 100 cycles.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113179"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li7P3S11 double-layer electrolyte for silicon-based all-solid-state batteries: Interface SiS2-doping\",\"authors\":\"Nantao Chen, Huiyao Li, Youlan Zou, Zhuoran Ao, Peiguang Li, Yinan Lao, Yu Wan\",\"doi\":\"10.1016/j.materresbull.2024.113179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS<sub>2</sub>-doping Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> (LPS-<em>x</em>Si) membrane sandwiched between Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-<em>x</em>Si|LPS). LPS-<em>x</em>Si|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li<sup>+</sup> transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 ℃ with 0.1 mA cm<sup>−2</sup>. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g<sup>−1</sup> and remains 339.5 mAh g<sup>−1</sup> after 100 cycles.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"182 \",\"pages\":\"Article 113179\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824005099\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005099","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
硫化物固体电解质具有优异的离子导电性和机械延展性,是开发硅基阳极全固态电池不可或缺的材料。然而,硫化物与硅之间不友好的界面仍会导致循环性能不佳。在此,我们报告了一种掺杂 SiS2 的 Li7P3S11(LPS-xSi)膜,它夹在 Li7P3S11 电解质和硅电极之间,形成双层硫化物电解质(LPS-xSi|LPS)。LPS-xSi|LPS 双层与硅阳极接触良好,并在界面上形成锂硅合金,从而消除了不良副反应,促进了界面的锂+传输。在 30 °C 时,LPS-2Si|LPS 的离子电导率最高,达到 5.4 × 10-4 S cm-1。LiIn | LPS-2Si|LPS | LiIn 电池在 30 ℃、0.1 mA cm-2 的条件下可稳定工作 1000 小时以上。组装好的 99 wt.% Si | LPS-2Si|LPS | LiIn 电池的初始放电容量为 2208.7 mAh g-1,循环 100 次后仍为 339.5 mAh g-1。
Li7P3S11 double-layer electrolyte for silicon-based all-solid-state batteries: Interface SiS2-doping
Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS2-doping Li7P3S11 (LPS-xSi) membrane sandwiched between Li7P3S11 electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-xSi|LPS). LPS-xSi|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li+ transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 × 10−4 S cm−1 at 30 °C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 ℃ with 0.1 mA cm−2. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g−1 and remains 339.5 mAh g−1 after 100 cycles.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.