用于硅基全固态电池的 Li7P3S11 双层电解质:界面掺杂SiS2

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-11-06 DOI:10.1016/j.materresbull.2024.113179
Nantao Chen, Huiyao Li, Youlan Zou, Zhuoran Ao, Peiguang Li, Yinan Lao, Yu Wan
{"title":"用于硅基全固态电池的 Li7P3S11 双层电解质:界面掺杂SiS2","authors":"Nantao Chen,&nbsp;Huiyao Li,&nbsp;Youlan Zou,&nbsp;Zhuoran Ao,&nbsp;Peiguang Li,&nbsp;Yinan Lao,&nbsp;Yu Wan","doi":"10.1016/j.materresbull.2024.113179","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS<sub>2</sub>-doping Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> (LPS-<em>x</em>Si) membrane sandwiched between Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-<em>x</em>Si|LPS). LPS-<em>x</em>Si|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li<sup>+</sup> transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 ℃ with 0.1 mA cm<sup>−2</sup>. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g<sup>−1</sup> and remains 339.5 mAh g<sup>−1</sup> after 100 cycles.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113179"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li7P3S11 double-layer electrolyte for silicon-based all-solid-state batteries: Interface SiS2-doping\",\"authors\":\"Nantao Chen,&nbsp;Huiyao Li,&nbsp;Youlan Zou,&nbsp;Zhuoran Ao,&nbsp;Peiguang Li,&nbsp;Yinan Lao,&nbsp;Yu Wan\",\"doi\":\"10.1016/j.materresbull.2024.113179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS<sub>2</sub>-doping Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> (LPS-<em>x</em>Si) membrane sandwiched between Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-<em>x</em>Si|LPS). LPS-<em>x</em>Si|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li<sup>+</sup> transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 ℃ with 0.1 mA cm<sup>−2</sup>. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g<sup>−1</sup> and remains 339.5 mAh g<sup>−1</sup> after 100 cycles.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"182 \",\"pages\":\"Article 113179\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824005099\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005099","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硫化物固体电解质具有优异的离子导电性和机械延展性,是开发硅基阳极全固态电池不可或缺的材料。然而,硫化物与硅之间不友好的界面仍会导致循环性能不佳。在此,我们报告了一种掺杂 SiS2 的 Li7P3S11(LPS-xSi)膜,它夹在 Li7P3S11 电解质和硅电极之间,形成双层硫化物电解质(LPS-xSi|LPS)。LPS-xSi|LPS 双层与硅阳极接触良好,并在界面上形成锂硅合金,从而消除了不良副反应,促进了界面的锂+传输。在 30 °C 时,LPS-2Si|LPS 的离子电导率最高,达到 5.4 × 10-4 S cm-1。LiIn | LPS-2Si|LPS | LiIn 电池在 30 ℃、0.1 mA cm-2 的条件下可稳定工作 1000 小时以上。组装好的 99 wt.% Si | LPS-2Si|LPS | LiIn 电池的初始放电容量为 2208.7 mAh g-1,循环 100 次后仍为 339.5 mAh g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Li7P3S11 double-layer electrolyte for silicon-based all-solid-state batteries: Interface SiS2-doping
Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS2-doping Li7P3S11 (LPS-xSi) membrane sandwiched between Li7P3S11 electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-xSi|LPS). LPS-xSi|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li+ transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 × 10−4 S cm−1 at 30 °C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 ℃ with 0.1 mA cm−2. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g−1 and remains 339.5 mAh g−1 after 100 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Effect of Cr substitution in ZnFe2O4 nanoparticles on the electron transfer at electrochemical interfaces Zn2+-decorated porous g-C3N4 with nitrogen vacancies: Synthesis, enhanced photocatalytic performance and mechanism in degrading organic contaminants Efficient enhancement of piezo-catalytic activity of BaTiO3-based piezoelectric ceramics via phase boundary engineering Interfacial coupling mechanism for efficient degradation of tetracycline by heteroatom iodine (I)-doped BiOBr under visible light: Efficacy and driving force Synthesis of molybdenum disulfide/covalent organic frameworks composite for efficient solar-driven hydrogen production and pollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1