Guobin Yang , Huaiyan Qi , Xueying Wu , An Liu , Shaohua Zhang , Jintao Zhang
{"title":"不同烷基链长的硫代咪唑啉和阳离子表面活性剂在二氧化碳饱和的氯化钠溶液中对 X80 碳钢的协同抑制作用","authors":"Guobin Yang , Huaiyan Qi , Xueying Wu , An Liu , Shaohua Zhang , Jintao Zhang","doi":"10.1016/j.ijoes.2024.100869","DOIUrl":null,"url":null,"abstract":"<div><div>The corrosion inhibition performance of the thioureido imidazoline (TU-IM) corrosion inhibitor, along with three surfactants, was assessed for X80 carbon steels in a CO<sub>2</sub>-saturated NaCl solution using weight loss tests, electrochemical and microstructural characterization. Results demonstrate that the corrosion-inhibition efficiency of surfactants improves with increasing alkyl-chain length in the following order: cetyltrimethylammonium bromide (CTAB) > tetradecyltrimethylammonium bromide (TTAB) > dodecyltrimethylammonium bromide (DTAB). A synergistic corrosion inhibition effect between TU-IM and DTAB/TTAB was observed, with the best performance achieved using 10 mg/L TU-IM and 10 mg/L DTAB/TTAB (inhibition efficiency: 97.68 %), which is mainly attributed to the cooperative adsorption of both substances. By contrast, the synergistic inhibition capability of TU-IM with the surfactants decreased as the alkyl-chain length increased, and even an antagonistic effect was noted for the combination of TU-IM + CTAB owing to the competitive adsorption between the surfactant and the corrosion inhibitor.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic inhibition effect of thioureido imidazoline and cationic surfactants with different alkyl chain lengths on X80 carbon steel in CO2-saturated NaCl solutions\",\"authors\":\"Guobin Yang , Huaiyan Qi , Xueying Wu , An Liu , Shaohua Zhang , Jintao Zhang\",\"doi\":\"10.1016/j.ijoes.2024.100869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The corrosion inhibition performance of the thioureido imidazoline (TU-IM) corrosion inhibitor, along with three surfactants, was assessed for X80 carbon steels in a CO<sub>2</sub>-saturated NaCl solution using weight loss tests, electrochemical and microstructural characterization. Results demonstrate that the corrosion-inhibition efficiency of surfactants improves with increasing alkyl-chain length in the following order: cetyltrimethylammonium bromide (CTAB) > tetradecyltrimethylammonium bromide (TTAB) > dodecyltrimethylammonium bromide (DTAB). A synergistic corrosion inhibition effect between TU-IM and DTAB/TTAB was observed, with the best performance achieved using 10 mg/L TU-IM and 10 mg/L DTAB/TTAB (inhibition efficiency: 97.68 %), which is mainly attributed to the cooperative adsorption of both substances. By contrast, the synergistic inhibition capability of TU-IM with the surfactants decreased as the alkyl-chain length increased, and even an antagonistic effect was noted for the combination of TU-IM + CTAB owing to the competitive adsorption between the surfactant and the corrosion inhibitor.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124004115\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124004115","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Synergistic inhibition effect of thioureido imidazoline and cationic surfactants with different alkyl chain lengths on X80 carbon steel in CO2-saturated NaCl solutions
The corrosion inhibition performance of the thioureido imidazoline (TU-IM) corrosion inhibitor, along with three surfactants, was assessed for X80 carbon steels in a CO2-saturated NaCl solution using weight loss tests, electrochemical and microstructural characterization. Results demonstrate that the corrosion-inhibition efficiency of surfactants improves with increasing alkyl-chain length in the following order: cetyltrimethylammonium bromide (CTAB) > tetradecyltrimethylammonium bromide (TTAB) > dodecyltrimethylammonium bromide (DTAB). A synergistic corrosion inhibition effect between TU-IM and DTAB/TTAB was observed, with the best performance achieved using 10 mg/L TU-IM and 10 mg/L DTAB/TTAB (inhibition efficiency: 97.68 %), which is mainly attributed to the cooperative adsorption of both substances. By contrast, the synergistic inhibition capability of TU-IM with the surfactants decreased as the alkyl-chain length increased, and even an antagonistic effect was noted for the combination of TU-IM + CTAB owing to the competitive adsorption between the surfactant and the corrosion inhibitor.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry