用 Micro-CT 和晶格玻尔兹曼法研究 PEMFCs 气体扩散层和气体通道中液滴的动态变化

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-11-13 DOI:10.1016/j.fuel.2024.133677
Xuecheng Lv , Zhifu Zhou , Wei-Tao Wu , Lei Wei , Linsong Gao , Jizu Lyu , Chengzhi Hu , Yang Li , Yubai Li , Yongchen Song
{"title":"用 Micro-CT 和晶格玻尔兹曼法研究 PEMFCs 气体扩散层和气体通道中液滴的动态变化","authors":"Xuecheng Lv ,&nbsp;Zhifu Zhou ,&nbsp;Wei-Tao Wu ,&nbsp;Lei Wei ,&nbsp;Linsong Gao ,&nbsp;Jizu Lyu ,&nbsp;Chengzhi Hu ,&nbsp;Yang Li ,&nbsp;Yubai Li ,&nbsp;Yongchen Song","doi":"10.1016/j.fuel.2024.133677","DOIUrl":null,"url":null,"abstract":"<div><div>This study reconstructed the 3D structure of the gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) using micro-CT technology and analyzed the droplet dynamics within the GDL and gas channel (GC) using the lattice Boltzmann method (LBM). A predictive model for droplet detachment at the GDL-GC interface was developed and its applicability under varying gas velocities and GDL wettability conditions was analyzed. Results indicate that, compared to single-scale GC spaces without GDL, significant differences exist in the droplet detachment trajectories and liquid bridge rupture points within the multi-scale GDL-GC spaces. Increased gas velocity and intrinsic contact angle within the GDL reduce the volume of detaching droplets and heighten detachment frequency. Optimal liquid water removal occurred at intrinsic contact angles between 120°-140°. Angles below this range impede droplet detachment in the GC, while angles above it result in water accumulation within the GDL. In the predictive model, the critical detachment force, generated by the liquid bridge connection, forms an angle with the gas flow, with its characteristic length defined by the minimum diameter at the bridge’s necking.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133677"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of droplet dynamic in PEMFCs gas diffusion layer and gas channel with Micro-CT and lattice Boltzmann method\",\"authors\":\"Xuecheng Lv ,&nbsp;Zhifu Zhou ,&nbsp;Wei-Tao Wu ,&nbsp;Lei Wei ,&nbsp;Linsong Gao ,&nbsp;Jizu Lyu ,&nbsp;Chengzhi Hu ,&nbsp;Yang Li ,&nbsp;Yubai Li ,&nbsp;Yongchen Song\",\"doi\":\"10.1016/j.fuel.2024.133677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reconstructed the 3D structure of the gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) using micro-CT technology and analyzed the droplet dynamics within the GDL and gas channel (GC) using the lattice Boltzmann method (LBM). A predictive model for droplet detachment at the GDL-GC interface was developed and its applicability under varying gas velocities and GDL wettability conditions was analyzed. Results indicate that, compared to single-scale GC spaces without GDL, significant differences exist in the droplet detachment trajectories and liquid bridge rupture points within the multi-scale GDL-GC spaces. Increased gas velocity and intrinsic contact angle within the GDL reduce the volume of detaching droplets and heighten detachment frequency. Optimal liquid water removal occurred at intrinsic contact angles between 120°-140°. Angles below this range impede droplet detachment in the GC, while angles above it result in water accumulation within the GDL. In the predictive model, the critical detachment force, generated by the liquid bridge connection, forms an angle with the gas flow, with its characteristic length defined by the minimum diameter at the bridge’s necking.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"381 \",\"pages\":\"Article 133677\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124028266\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028266","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用微 CT 技术重建了质子交换膜燃料电池(PEMFC)中气体扩散层(GDL)的三维结构,并利用晶格玻尔兹曼法(LBM)分析了 GDL 和气体通道(GC)内的液滴动力学。开发了 GDL-GC 界面液滴脱离的预测模型,并分析了该模型在不同气速和 GDL 润湿性条件下的适用性。结果表明,与不含 GDL 的单尺度 GC 空间相比,多尺度 GDL-GC 空间内的液滴分离轨迹和液桥断裂点存在显著差异。GDL 内气体速度和固有接触角的增加减少了分离液滴的体积,提高了分离频率。当固有接触角在 120°-140° 之间时,液态水分离效果最佳。低于此范围的角度会阻碍液滴在 GC 中脱离,而高于此范围的角度则会导致水在 GDL 中积聚。在预测模型中,液桥连接产生的临界分离力与气流形成一个角度,其特征长度由液桥颈部的最小直径确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of droplet dynamic in PEMFCs gas diffusion layer and gas channel with Micro-CT and lattice Boltzmann method
This study reconstructed the 3D structure of the gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) using micro-CT technology and analyzed the droplet dynamics within the GDL and gas channel (GC) using the lattice Boltzmann method (LBM). A predictive model for droplet detachment at the GDL-GC interface was developed and its applicability under varying gas velocities and GDL wettability conditions was analyzed. Results indicate that, compared to single-scale GC spaces without GDL, significant differences exist in the droplet detachment trajectories and liquid bridge rupture points within the multi-scale GDL-GC spaces. Increased gas velocity and intrinsic contact angle within the GDL reduce the volume of detaching droplets and heighten detachment frequency. Optimal liquid water removal occurred at intrinsic contact angles between 120°-140°. Angles below this range impede droplet detachment in the GC, while angles above it result in water accumulation within the GDL. In the predictive model, the critical detachment force, generated by the liquid bridge connection, forms an angle with the gas flow, with its characteristic length defined by the minimum diameter at the bridge’s necking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Highly efficient Zr-based coordination polymer for catalytic transfer hydrogenation of 5-hydroxymethylfurfural: Tuning acid strength and enhancing stability Engineering noble metal-free nickel catalysts for highly efficient liquid fuel production from waste polyolefins under mild conditions A functional fluorine (F)-containing oxidiser of nano-networked NH4CuF3 to improve the combustion efficiency of Al powder Gold nanocatalysts supported on Mono-/Mixed oxides for efficient synthesis of methyl methacrylate Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1