三维层间角交错编织复合材料的设计策略

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-11-01 DOI:10.1016/j.matdes.2024.113414
Elena Sitnikova , Mingming Xu , Weiyi Kong , Shoufeng Hu , Shuguang Li
{"title":"三维层间角交错编织复合材料的设计策略","authors":"Elena Sitnikova ,&nbsp;Mingming Xu ,&nbsp;Weiyi Kong ,&nbsp;Shoufeng Hu ,&nbsp;Shuguang Li","doi":"10.1016/j.matdes.2024.113414","DOIUrl":null,"url":null,"abstract":"<div><div>A design strategy for 3D layer-to-layer angle interlock woven composites has been established by employing a set of three key properties of the weave (KPoWs): the global fibre volume fraction, the interlocking angle and the ratio of the weft tow volume to the warp tow volume. Using analytically derived expressions of the KPoWs, their variation trends relative to the manufacturing parameters have been revealed. At the same time, via a range of systematic computational material characterisation exercises, the KPoWs were shown to be sufficient for representing the woven reinforcement as far as the elastic behaviour predictions are concerned, because the effective elastic properties were found to follow consistent variation trends with the KPoWs. As a result, through use of KPoWs, manufacturing parameters have been associated with the effective elastic properties in a systematic manner. This offer means for obtaining a desirable elastic behaviour of 3D woven composites via variation of their internal architecture. The design method developed is the alternative to trial-and-error-based selection method conventionally adopted for this type of materials. As an example of application of the proposed method, a woven composite with balanced weft and warp properties has been designed.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113414"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design strategy for 3D layer-to-layer angle interlock woven composites\",\"authors\":\"Elena Sitnikova ,&nbsp;Mingming Xu ,&nbsp;Weiyi Kong ,&nbsp;Shoufeng Hu ,&nbsp;Shuguang Li\",\"doi\":\"10.1016/j.matdes.2024.113414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A design strategy for 3D layer-to-layer angle interlock woven composites has been established by employing a set of three key properties of the weave (KPoWs): the global fibre volume fraction, the interlocking angle and the ratio of the weft tow volume to the warp tow volume. Using analytically derived expressions of the KPoWs, their variation trends relative to the manufacturing parameters have been revealed. At the same time, via a range of systematic computational material characterisation exercises, the KPoWs were shown to be sufficient for representing the woven reinforcement as far as the elastic behaviour predictions are concerned, because the effective elastic properties were found to follow consistent variation trends with the KPoWs. As a result, through use of KPoWs, manufacturing parameters have been associated with the effective elastic properties in a systematic manner. This offer means for obtaining a desirable elastic behaviour of 3D woven composites via variation of their internal architecture. The design method developed is the alternative to trial-and-error-based selection method conventionally adopted for this type of materials. As an example of application of the proposed method, a woven composite with balanced weft and warp properties has been designed.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"247 \",\"pages\":\"Article 113414\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007895\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007895","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过使用编织物的三个关键属性(KPoWs):全纤维体积分数、互锁角度和纬纱束体积与经纱束体积之比,建立了三维层对层角度互锁编织复合材料的设计策略。通过分析得出的 KPoWs 表达式,揭示了它们相对于制造参数的变化趋势。同时,通过一系列系统计算材料特性的练习,KPoWs 被证明足以代表编织加固材料的弹性行为预测,因为有效弹性特性与 KPoWs 的变化趋势一致。因此,通过使用 KPoWs,可以系统地将制造参数与有效弹性特性联系起来。这为通过改变三维编织复合材料的内部结构获得理想的弹性性能提供了方法。所开发的设计方法可替代此类材料通常采用的基于试错的选择方法。作为应用所提方法的一个实例,我们设计了一种经纬性能平衡的编织复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design strategy for 3D layer-to-layer angle interlock woven composites
A design strategy for 3D layer-to-layer angle interlock woven composites has been established by employing a set of three key properties of the weave (KPoWs): the global fibre volume fraction, the interlocking angle and the ratio of the weft tow volume to the warp tow volume. Using analytically derived expressions of the KPoWs, their variation trends relative to the manufacturing parameters have been revealed. At the same time, via a range of systematic computational material characterisation exercises, the KPoWs were shown to be sufficient for representing the woven reinforcement as far as the elastic behaviour predictions are concerned, because the effective elastic properties were found to follow consistent variation trends with the KPoWs. As a result, through use of KPoWs, manufacturing parameters have been associated with the effective elastic properties in a systematic manner. This offer means for obtaining a desirable elastic behaviour of 3D woven composites via variation of their internal architecture. The design method developed is the alternative to trial-and-error-based selection method conventionally adopted for this type of materials. As an example of application of the proposed method, a woven composite with balanced weft and warp properties has been designed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Tailoring nanotwinned Cu interlayers for localizing anisotropic plastic deformation during low energy input ultrasonic welding of robust Cu-Cu joints Hybrid fibre-reinforced cementitious composites with short polyethylene and continue carbon fibres: Influence of roving impregnation on tensile and cracking behaviour Investigate on dissimilar welding of high-entropy alloy and 310S with various fillers In situ X-ray imaging and quantitative analysis of balling during laser powder bed fusion of 316L at high layer thickness Design of a lightweight broadband vibration reduction structure with embedded acoustic black holes in viscoelastic damping materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1