多代表交互线性涡模型:湍流化学交互作用调查以及进展变量定义和 PDF 的评估

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-11-12 DOI:10.1016/j.fuel.2024.133445
Nidal Doubiani , Michael Oevermann
{"title":"多代表交互线性涡模型:湍流化学交互作用调查以及进展变量定义和 PDF 的评估","authors":"Nidal Doubiani ,&nbsp;Michael Oevermann","doi":"10.1016/j.fuel.2024.133445","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the predictions of unsteady effects in combustion processes requires novel combustion models that include turbulence chemistry interaction effects. The Multiple Representative Interactive Linear Eddy Model (MRILEM) is an improved version of the previous RILEM variant. MRILEM utilizes a pressure coupling instead of a volume constraint to intrinsically include heat effects into the LEM line with no supplementary modeling. In addition, it advances multiple LEM lines in parallel to improve statistical fidelity. The pressure coupling of MRILEM generates a coupling effect between the LEM lines that assists in communicating the combustion process between the lines. The ”Spray-B” engine of the Engine Combustion Network (ECN) was simulated using MRILEM. While the original RILEM variation employs a straightforward Dirac <span><math><mi>δ</mi></math></span>-peak for the progress variable, a realistic PDF requires this function to extend over the entire space. The introduced MRILEM compares the utilization of two progress variable PDFs, namely a step function defined based on the mean and a <span><math><mi>β</mi></math></span>-PDF generated from the progress variable mean and variance. The progress variable variance was calculated based on the Pierce and Moin formulation with a RANS adaptation based on the integral length scale. In addition, two definitions of the progress variable are investigated, namely <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>298</mn></mrow></msub></math></span>. A tabulation method is introduced for RILEM to reduce the computational time by advancing pre-generated LEM solution matrices constructed in mixture fraction <span><math><mi>Z</mi></math></span> and progress variable <span><math><mi>c</mi></math></span> spaces. The different variants of the model, i.e., MRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-Step<span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>, MRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, TRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-<span><math><msub><mrow><mtext>Step</mtext></mrow><mrow><mi>c</mi></mrow></msub></math></span>, and TRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> were compared against experiments based on heat release rate, ignition delay, flame lift-off, and computational time.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133445"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple representative interactive linear eddy model: Investigation of turbulence chemistry interaction and evaluation of progress variable definition and PDFs\",\"authors\":\"Nidal Doubiani ,&nbsp;Michael Oevermann\",\"doi\":\"10.1016/j.fuel.2024.133445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the predictions of unsteady effects in combustion processes requires novel combustion models that include turbulence chemistry interaction effects. The Multiple Representative Interactive Linear Eddy Model (MRILEM) is an improved version of the previous RILEM variant. MRILEM utilizes a pressure coupling instead of a volume constraint to intrinsically include heat effects into the LEM line with no supplementary modeling. In addition, it advances multiple LEM lines in parallel to improve statistical fidelity. The pressure coupling of MRILEM generates a coupling effect between the LEM lines that assists in communicating the combustion process between the lines. The ”Spray-B” engine of the Engine Combustion Network (ECN) was simulated using MRILEM. While the original RILEM variation employs a straightforward Dirac <span><math><mi>δ</mi></math></span>-peak for the progress variable, a realistic PDF requires this function to extend over the entire space. The introduced MRILEM compares the utilization of two progress variable PDFs, namely a step function defined based on the mean and a <span><math><mi>β</mi></math></span>-PDF generated from the progress variable mean and variance. The progress variable variance was calculated based on the Pierce and Moin formulation with a RANS adaptation based on the integral length scale. In addition, two definitions of the progress variable are investigated, namely <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>298</mn></mrow></msub></math></span>. A tabulation method is introduced for RILEM to reduce the computational time by advancing pre-generated LEM solution matrices constructed in mixture fraction <span><math><mi>Z</mi></math></span> and progress variable <span><math><mi>c</mi></math></span> spaces. The different variants of the model, i.e., MRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-Step<span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>, MRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, TRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-<span><math><msub><mrow><mtext>Step</mtext></mrow><mrow><mi>c</mi></mrow></msub></math></span>, and TRILEM-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Z</mi></mrow></msub></math></span>-<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> were compared against experiments based on heat release rate, ignition delay, flame lift-off, and computational time.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"381 \",\"pages\":\"Article 133445\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124025948\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124025948","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

要改进燃烧过程中的非稳态效应预测,需要建立包含湍流化学交互效应的新型燃烧模型。多代表交互线性涡流模型(MRILEM)是先前 RILEM 变体的改进版本。MRILEM 利用压力耦合而不是体积约束,将热效应内在地纳入线性涡流模型中,而无需补充建模。此外,它还能并行推进多条 LEM 线路,以提高统计保真度。MRILEM 的压力耦合在 LEM 管路之间产生耦合效应,有助于在管路之间传递燃烧过程。发动机燃烧网络(ECN)的 "Spray-B "发动机是用 MRILEM 模拟的。虽然最初的 RILEM 变体采用了直接的 Dirac δ 峰作为进度变量,但现实的 PDF 要求该函数扩展到整个空间。引入的 MRILEM 比较了两个进度变量 PDF 的使用情况,即基于平均值定义的阶跃函数和由进度变量平均值和方差生成的 β-PDF 。进度变量方差的计算基于 Pierce 和 Moin 公式,并根据积分长度尺度对 RANS 进行了调整。此外,还研究了进度变量的两种定义,即 O2 和 h298。为 RILEM 引入了一种制表方法,通过推进在混合物分数 Z 和进展变量 c 空间中构建的预生成 LEM 解矩阵来减少计算时间。该模型的不同变体,即 MRILEM-βZ-Stepc、MRILEM-βZ-βc、TRILEM-βZ-Stepc 和 TRILEM-βZ-βc,根据热释放率、点火延迟、火焰腾空和计算时间与实验进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple representative interactive linear eddy model: Investigation of turbulence chemistry interaction and evaluation of progress variable definition and PDFs
Improving the predictions of unsteady effects in combustion processes requires novel combustion models that include turbulence chemistry interaction effects. The Multiple Representative Interactive Linear Eddy Model (MRILEM) is an improved version of the previous RILEM variant. MRILEM utilizes a pressure coupling instead of a volume constraint to intrinsically include heat effects into the LEM line with no supplementary modeling. In addition, it advances multiple LEM lines in parallel to improve statistical fidelity. The pressure coupling of MRILEM generates a coupling effect between the LEM lines that assists in communicating the combustion process between the lines. The ”Spray-B” engine of the Engine Combustion Network (ECN) was simulated using MRILEM. While the original RILEM variation employs a straightforward Dirac δ-peak for the progress variable, a realistic PDF requires this function to extend over the entire space. The introduced MRILEM compares the utilization of two progress variable PDFs, namely a step function defined based on the mean and a β-PDF generated from the progress variable mean and variance. The progress variable variance was calculated based on the Pierce and Moin formulation with a RANS adaptation based on the integral length scale. In addition, two definitions of the progress variable are investigated, namely O2 and h298. A tabulation method is introduced for RILEM to reduce the computational time by advancing pre-generated LEM solution matrices constructed in mixture fraction Z and progress variable c spaces. The different variants of the model, i.e., MRILEM-βZ-Stepc, MRILEM-βZ-βc, TRILEM-βZ-Stepc, and TRILEM-βZ-βc were compared against experiments based on heat release rate, ignition delay, flame lift-off, and computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Highly efficient Zr-based coordination polymer for catalytic transfer hydrogenation of 5-hydroxymethylfurfural: Tuning acid strength and enhancing stability Engineering noble metal-free nickel catalysts for highly efficient liquid fuel production from waste polyolefins under mild conditions A functional fluorine (F)-containing oxidiser of nano-networked NH4CuF3 to improve the combustion efficiency of Al powder Gold nanocatalysts supported on Mono-/Mixed oxides for efficient synthesis of methyl methacrylate Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1