人工智能引发的工作不安全感如何影响知识动力:人工智能自我效能的缓解作用

IF 15.6 1区 管理学 Q1 BUSINESS Journal of Innovation & Knowledge Pub Date : 2024-10-01 DOI:10.1016/j.jik.2024.100590
Byung-Jik Kim , Min-Jik Kim
{"title":"人工智能引发的工作不安全感如何影响知识动力:人工智能自我效能的缓解作用","authors":"Byung-Jik Kim ,&nbsp;Min-Jik Kim","doi":"10.1016/j.jik.2024.100590","DOIUrl":null,"url":null,"abstract":"<div><div>This research examines the intricate relationships between artificial intelligence (AI)-induced job insecurity, psychological safety, knowledge-hiding behavior, and self-efficacy in AI learning within organizational contexts. As AI technologies increasingly permeate the workplace, comprehending their impact on employee behavior and organizational dynamics becomes crucial. Based on several theories, we use a time-lagged research design to propose and test a moderated mediation model. We collected data from 402 employees across various industries in South Korea at three different time points. Our findings reveal that AI-induced job insecurity positively relates to knowledge-hiding behavior, directly and indirectly, via reduced psychological safety. Moreover, we discover that self-efficacy in AI learning moderates the relationship between AI-induced job insecurity and psychological safety, such that high self-efficacy buffers the harmful influence of job insecurity on psychological safety. These results enhance the existing literature on organizational technological change by clarifying the psychological processes through which AI implementation influences employee behavior. Our study highlights the critical role of psychological safety as a mediator and self-efficacy as a moderator in this process. These insights present significant implications for managers and organizations navigating the challenges of AI integration. They emphasize the need for strategies that foster psychological safety and enhance members’ confidence in their ability to adapt to AI technologies. Our research underscores the significance of considering both the technical and human aspects of AI implementation within organizational contexts.</div></div>","PeriodicalId":46792,"journal":{"name":"Journal of Innovation & Knowledge","volume":"9 4","pages":"Article 100590"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How artificial intelligence-induced job insecurity shapes knowledge dynamics: the mitigating role of artificial intelligence self-efficacy\",\"authors\":\"Byung-Jik Kim ,&nbsp;Min-Jik Kim\",\"doi\":\"10.1016/j.jik.2024.100590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research examines the intricate relationships between artificial intelligence (AI)-induced job insecurity, psychological safety, knowledge-hiding behavior, and self-efficacy in AI learning within organizational contexts. As AI technologies increasingly permeate the workplace, comprehending their impact on employee behavior and organizational dynamics becomes crucial. Based on several theories, we use a time-lagged research design to propose and test a moderated mediation model. We collected data from 402 employees across various industries in South Korea at three different time points. Our findings reveal that AI-induced job insecurity positively relates to knowledge-hiding behavior, directly and indirectly, via reduced psychological safety. Moreover, we discover that self-efficacy in AI learning moderates the relationship between AI-induced job insecurity and psychological safety, such that high self-efficacy buffers the harmful influence of job insecurity on psychological safety. These results enhance the existing literature on organizational technological change by clarifying the psychological processes through which AI implementation influences employee behavior. Our study highlights the critical role of psychological safety as a mediator and self-efficacy as a moderator in this process. These insights present significant implications for managers and organizations navigating the challenges of AI integration. They emphasize the need for strategies that foster psychological safety and enhance members’ confidence in their ability to adapt to AI technologies. Our research underscores the significance of considering both the technical and human aspects of AI implementation within organizational contexts.</div></div>\",\"PeriodicalId\":46792,\"journal\":{\"name\":\"Journal of Innovation & Knowledge\",\"volume\":\"9 4\",\"pages\":\"Article 100590\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovation & Knowledge\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2444569X2400129X\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation & Knowledge","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2444569X2400129X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了人工智能(AI)引发的工作不安全感、心理安全感、知识隐藏行为和组织环境中人工智能学习的自我效能感之间错综复杂的关系。随着人工智能技术日益渗透到工作场所,理解其对员工行为和组织动态的影响变得至关重要。基于多个理论,我们采用时滞研究设计,提出并测试了一个调节中介模型。我们收集了韩国不同行业 402 名员工在三个不同时间点的数据。我们的研究结果表明,人工智能引发的工作不安全感通过降低心理安全感直接或间接地与知识隐藏行为正相关。此外,我们还发现,人工智能学习中的自我效能会调节人工智能引发的工作不安全感与心理安全之间的关系,例如,高自我效能会缓冲工作不安全感对心理安全的有害影响。这些结果澄清了人工智能实施对员工行为产生影响的心理过程,从而加强了现有关于组织技术变革的文献。我们的研究强调了心理安全感在这一过程中作为中介和自我效能感作为调节的关键作用。这些见解对管理者和组织应对人工智能整合的挑战具有重要意义。它们强调,需要制定战略来促进心理安全,并增强成员对自身适应人工智能技术能力的信心。我们的研究强调了在组织环境中同时考虑人工智能实施的技术和人文方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How artificial intelligence-induced job insecurity shapes knowledge dynamics: the mitigating role of artificial intelligence self-efficacy
This research examines the intricate relationships between artificial intelligence (AI)-induced job insecurity, psychological safety, knowledge-hiding behavior, and self-efficacy in AI learning within organizational contexts. As AI technologies increasingly permeate the workplace, comprehending their impact on employee behavior and organizational dynamics becomes crucial. Based on several theories, we use a time-lagged research design to propose and test a moderated mediation model. We collected data from 402 employees across various industries in South Korea at three different time points. Our findings reveal that AI-induced job insecurity positively relates to knowledge-hiding behavior, directly and indirectly, via reduced psychological safety. Moreover, we discover that self-efficacy in AI learning moderates the relationship between AI-induced job insecurity and psychological safety, such that high self-efficacy buffers the harmful influence of job insecurity on psychological safety. These results enhance the existing literature on organizational technological change by clarifying the psychological processes through which AI implementation influences employee behavior. Our study highlights the critical role of psychological safety as a mediator and self-efficacy as a moderator in this process. These insights present significant implications for managers and organizations navigating the challenges of AI integration. They emphasize the need for strategies that foster psychological safety and enhance members’ confidence in their ability to adapt to AI technologies. Our research underscores the significance of considering both the technical and human aspects of AI implementation within organizational contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
12.70%
发文量
118
审稿时长
37 days
期刊介绍: The Journal of Innovation and Knowledge (JIK) explores how innovation drives knowledge creation and vice versa, emphasizing that not all innovation leads to knowledge, but enduring innovation across diverse fields fosters theory and knowledge. JIK invites papers on innovations enhancing or generating knowledge, covering innovation processes, structures, outcomes, and behaviors at various levels. Articles in JIK examine knowledge-related changes promoting innovation for societal best practices. JIK serves as a platform for high-quality studies undergoing double-blind peer review, ensuring global dissemination to scholars, practitioners, and policymakers who recognize innovation and knowledge as economic drivers. It publishes theoretical articles, empirical studies, case studies, reviews, and other content, addressing current trends and emerging topics in innovation and knowledge. The journal welcomes suggestions for special issues and encourages articles to showcase contextual differences and lessons for a broad audience. In essence, JIK is an interdisciplinary journal dedicated to advancing theoretical and practical innovations and knowledge across multiple fields, including Economics, Business and Management, Engineering, Science, and Education.
期刊最新文献
Configurations of resourceful and demanding attributes of organizational culture in US hotels: An innovative approach using topic modeling and fsQCA Seeding young entrepreneurs: The role of business incubators Exploring the other side of innovative managerial decision-making: Emotions Addressing barriers to big data implementation in sustainable smart cities: Improved zero-sum grey game and grey best-worst method Contribution of female inventors to technological collaboration between high-tech firms and university in close proximity: Effect of innovative firm's characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1