{"title":"人工智能引发的工作不安全感如何影响知识动力:人工智能自我效能的缓解作用","authors":"Byung-Jik Kim , Min-Jik Kim","doi":"10.1016/j.jik.2024.100590","DOIUrl":null,"url":null,"abstract":"<div><div>This research examines the intricate relationships between artificial intelligence (AI)-induced job insecurity, psychological safety, knowledge-hiding behavior, and self-efficacy in AI learning within organizational contexts. As AI technologies increasingly permeate the workplace, comprehending their impact on employee behavior and organizational dynamics becomes crucial. Based on several theories, we use a time-lagged research design to propose and test a moderated mediation model. We collected data from 402 employees across various industries in South Korea at three different time points. Our findings reveal that AI-induced job insecurity positively relates to knowledge-hiding behavior, directly and indirectly, via reduced psychological safety. Moreover, we discover that self-efficacy in AI learning moderates the relationship between AI-induced job insecurity and psychological safety, such that high self-efficacy buffers the harmful influence of job insecurity on psychological safety. These results enhance the existing literature on organizational technological change by clarifying the psychological processes through which AI implementation influences employee behavior. Our study highlights the critical role of psychological safety as a mediator and self-efficacy as a moderator in this process. These insights present significant implications for managers and organizations navigating the challenges of AI integration. They emphasize the need for strategies that foster psychological safety and enhance members’ confidence in their ability to adapt to AI technologies. Our research underscores the significance of considering both the technical and human aspects of AI implementation within organizational contexts.</div></div>","PeriodicalId":46792,"journal":{"name":"Journal of Innovation & Knowledge","volume":"9 4","pages":"Article 100590"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How artificial intelligence-induced job insecurity shapes knowledge dynamics: the mitigating role of artificial intelligence self-efficacy\",\"authors\":\"Byung-Jik Kim , Min-Jik Kim\",\"doi\":\"10.1016/j.jik.2024.100590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research examines the intricate relationships between artificial intelligence (AI)-induced job insecurity, psychological safety, knowledge-hiding behavior, and self-efficacy in AI learning within organizational contexts. As AI technologies increasingly permeate the workplace, comprehending their impact on employee behavior and organizational dynamics becomes crucial. Based on several theories, we use a time-lagged research design to propose and test a moderated mediation model. We collected data from 402 employees across various industries in South Korea at three different time points. Our findings reveal that AI-induced job insecurity positively relates to knowledge-hiding behavior, directly and indirectly, via reduced psychological safety. Moreover, we discover that self-efficacy in AI learning moderates the relationship between AI-induced job insecurity and psychological safety, such that high self-efficacy buffers the harmful influence of job insecurity on psychological safety. These results enhance the existing literature on organizational technological change by clarifying the psychological processes through which AI implementation influences employee behavior. Our study highlights the critical role of psychological safety as a mediator and self-efficacy as a moderator in this process. These insights present significant implications for managers and organizations navigating the challenges of AI integration. They emphasize the need for strategies that foster psychological safety and enhance members’ confidence in their ability to adapt to AI technologies. Our research underscores the significance of considering both the technical and human aspects of AI implementation within organizational contexts.</div></div>\",\"PeriodicalId\":46792,\"journal\":{\"name\":\"Journal of Innovation & Knowledge\",\"volume\":\"9 4\",\"pages\":\"Article 100590\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovation & Knowledge\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2444569X2400129X\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation & Knowledge","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2444569X2400129X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
How artificial intelligence-induced job insecurity shapes knowledge dynamics: the mitigating role of artificial intelligence self-efficacy
This research examines the intricate relationships between artificial intelligence (AI)-induced job insecurity, psychological safety, knowledge-hiding behavior, and self-efficacy in AI learning within organizational contexts. As AI technologies increasingly permeate the workplace, comprehending their impact on employee behavior and organizational dynamics becomes crucial. Based on several theories, we use a time-lagged research design to propose and test a moderated mediation model. We collected data from 402 employees across various industries in South Korea at three different time points. Our findings reveal that AI-induced job insecurity positively relates to knowledge-hiding behavior, directly and indirectly, via reduced psychological safety. Moreover, we discover that self-efficacy in AI learning moderates the relationship between AI-induced job insecurity and psychological safety, such that high self-efficacy buffers the harmful influence of job insecurity on psychological safety. These results enhance the existing literature on organizational technological change by clarifying the psychological processes through which AI implementation influences employee behavior. Our study highlights the critical role of psychological safety as a mediator and self-efficacy as a moderator in this process. These insights present significant implications for managers and organizations navigating the challenges of AI integration. They emphasize the need for strategies that foster psychological safety and enhance members’ confidence in their ability to adapt to AI technologies. Our research underscores the significance of considering both the technical and human aspects of AI implementation within organizational contexts.
期刊介绍:
The Journal of Innovation and Knowledge (JIK) explores how innovation drives knowledge creation and vice versa, emphasizing that not all innovation leads to knowledge, but enduring innovation across diverse fields fosters theory and knowledge. JIK invites papers on innovations enhancing or generating knowledge, covering innovation processes, structures, outcomes, and behaviors at various levels. Articles in JIK examine knowledge-related changes promoting innovation for societal best practices.
JIK serves as a platform for high-quality studies undergoing double-blind peer review, ensuring global dissemination to scholars, practitioners, and policymakers who recognize innovation and knowledge as economic drivers. It publishes theoretical articles, empirical studies, case studies, reviews, and other content, addressing current trends and emerging topics in innovation and knowledge. The journal welcomes suggestions for special issues and encourages articles to showcase contextual differences and lessons for a broad audience.
In essence, JIK is an interdisciplinary journal dedicated to advancing theoretical and practical innovations and knowledge across multiple fields, including Economics, Business and Management, Engineering, Science, and Education.