提高水循环能力:乳酸-薄荷醇深度共晶溶剂,用于从受污染水体中高效去除和回收油脂(FOG)

Andrés S. Lagos , Andrea C. Landázuri
{"title":"提高水循环能力:乳酸-薄荷醇深度共晶溶剂,用于从受污染水体中高效去除和回收油脂(FOG)","authors":"Andrés S. Lagos ,&nbsp;Andrea C. Landázuri","doi":"10.1016/j.jil.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><div>Water pollution, particularly the contamination of water sources by fats, oils, and grease (FOG), presents a significant environmental challenge exacerbated by climate change. While conventional water resource recovery facilities (WRRFs) address various contaminants, FOG treatment often remains indirect and suboptimal. This study introduces an innovative, environmentally benign approach utilizing deep eutectic solvents (DESs) for the targeted removal and recovery of FOG from contaminated waters via liquid-liquid extraction. A binary DES comprising menthol and lactic acid was synthesized and evaluated for its efficacy in extracting oleic acid, selected as a model fatty acid contaminant. The investigation employed a comprehensive factorial design to optimize key operational parameters, including the molar ratio of DES components, solvent-to-water ratio, contact time, initial contaminant concentration, stirring speed, and phase separation time. Results demonstrated exceptional removal efficiencies exceeding 95 % under optimized conditions, with peak performance approaching 99.5 %. Optimal parameters were identified as a 1:1 molar ratio of menthol to lactic acid, 1:10 DES-to-water ratio, 15-minute contact time, 300 mg L⁻¹ initial contaminant concentration, 500 RPM stirring speed, and 8-hour phase separation. This research establishes a foundation for the application of DESs in water decontamination processes, potentially revolutionizing FOG management and advancing water circularity initiatives. The study's findings align with multiple UN Sustainable Development Goals, including SDG 6 (Clean Water and Sanitation), SDG 14 (Life Below Water), and SDG 12 (Responsible Consumption and Production), offering a promising avenue for sustainable water treatment technologies.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 2","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing water circularity: Lactic acid-menthol deep eutectic solvent for efficient fats, oils and grease (FOG) removal and recovery from contaminated waters\",\"authors\":\"Andrés S. Lagos ,&nbsp;Andrea C. Landázuri\",\"doi\":\"10.1016/j.jil.2024.100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water pollution, particularly the contamination of water sources by fats, oils, and grease (FOG), presents a significant environmental challenge exacerbated by climate change. While conventional water resource recovery facilities (WRRFs) address various contaminants, FOG treatment often remains indirect and suboptimal. This study introduces an innovative, environmentally benign approach utilizing deep eutectic solvents (DESs) for the targeted removal and recovery of FOG from contaminated waters via liquid-liquid extraction. A binary DES comprising menthol and lactic acid was synthesized and evaluated for its efficacy in extracting oleic acid, selected as a model fatty acid contaminant. The investigation employed a comprehensive factorial design to optimize key operational parameters, including the molar ratio of DES components, solvent-to-water ratio, contact time, initial contaminant concentration, stirring speed, and phase separation time. Results demonstrated exceptional removal efficiencies exceeding 95 % under optimized conditions, with peak performance approaching 99.5 %. Optimal parameters were identified as a 1:1 molar ratio of menthol to lactic acid, 1:10 DES-to-water ratio, 15-minute contact time, 300 mg L⁻¹ initial contaminant concentration, 500 RPM stirring speed, and 8-hour phase separation. This research establishes a foundation for the application of DESs in water decontamination processes, potentially revolutionizing FOG management and advancing water circularity initiatives. The study's findings align with multiple UN Sustainable Development Goals, including SDG 6 (Clean Water and Sanitation), SDG 14 (Life Below Water), and SDG 12 (Responsible Consumption and Production), offering a promising avenue for sustainable water treatment technologies.</div></div>\",\"PeriodicalId\":100794,\"journal\":{\"name\":\"Journal of Ionic Liquids\",\"volume\":\"4 2\",\"pages\":\"Article 100126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ionic Liquids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772422024000491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422024000491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水污染,尤其是油脂(FOG)对水源的污染,是一项重大的环境挑战,而气候变化又加剧了这一挑战。虽然传统的水资源回收设施(WRRFs)可以处理各种污染物,但对 FOG 的处理往往仍然是间接和次优的。本研究介绍了一种创新的、对环境无害的方法,即利用深共晶溶剂(DES),通过液液萃取,有针对性地去除和回收受污染水体中的 FOG。研究人员合成了一种由薄荷醇和乳酸组成的二元 DES,并评估了它在萃取油酸方面的功效。研究采用综合因子设计来优化关键操作参数,包括 DES 成分的摩尔比、溶剂与水的比例、接触时间、初始污染物浓度、搅拌速度和相分离时间。结果表明,在优化条件下,去除率超过 95%,峰值性能接近 99.5%。最佳参数被确定为薄荷醇与乳酸的摩尔比为 1:1,DES 与水的比例为 1:10,接触时间为 15 分钟,初始污染物浓度为 300 毫克/升-¹,搅拌速度为 500 转/分钟,相分离时间为 8 小时。这项研究为将 DES 应用于水净化工艺奠定了基础,有可能彻底改变 FOG 的管理并推进水循环计划。研究结果与多个联合国可持续发展目标相吻合,包括可持续发展目标 6(清洁水和卫生)、可持续发展目标 14(水下生命)和可持续发展目标 12(负责任的消费和生产),为可持续水处理技术提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing water circularity: Lactic acid-menthol deep eutectic solvent for efficient fats, oils and grease (FOG) removal and recovery from contaminated waters
Water pollution, particularly the contamination of water sources by fats, oils, and grease (FOG), presents a significant environmental challenge exacerbated by climate change. While conventional water resource recovery facilities (WRRFs) address various contaminants, FOG treatment often remains indirect and suboptimal. This study introduces an innovative, environmentally benign approach utilizing deep eutectic solvents (DESs) for the targeted removal and recovery of FOG from contaminated waters via liquid-liquid extraction. A binary DES comprising menthol and lactic acid was synthesized and evaluated for its efficacy in extracting oleic acid, selected as a model fatty acid contaminant. The investigation employed a comprehensive factorial design to optimize key operational parameters, including the molar ratio of DES components, solvent-to-water ratio, contact time, initial contaminant concentration, stirring speed, and phase separation time. Results demonstrated exceptional removal efficiencies exceeding 95 % under optimized conditions, with peak performance approaching 99.5 %. Optimal parameters were identified as a 1:1 molar ratio of menthol to lactic acid, 1:10 DES-to-water ratio, 15-minute contact time, 300 mg L⁻¹ initial contaminant concentration, 500 RPM stirring speed, and 8-hour phase separation. This research establishes a foundation for the application of DESs in water decontamination processes, potentially revolutionizing FOG management and advancing water circularity initiatives. The study's findings align with multiple UN Sustainable Development Goals, including SDG 6 (Clean Water and Sanitation), SDG 14 (Life Below Water), and SDG 12 (Responsible Consumption and Production), offering a promising avenue for sustainable water treatment technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Phase equilibrium and kinetic studies of choline chloride-based deep eutectic solvents in water system for the inhibition of methane gas hydrate formation Enhancing water circularity: Lactic acid-menthol deep eutectic solvent for efficient fats, oils and grease (FOG) removal and recovery from contaminated waters Designing dicationic organic salts and ionic liquids exhibiting high fluorescence in the solid state Effect of modifiers on the stability of 1‑butyl‑3-methylimidazolium-based ionic liquids Surface-induced nano-generator utilizing a thermo-responsive smart window based on ionic liquid aqueous solution that exhibits lower critical solution temperature type phase separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1