Gui-Fang Ou , Song-Jie Wang , Hao Deng , Wen-Yong Duan , Xu-Ping Li , Hans-Peter Schertl
{"title":"俯冲起始期混合板块流体的弧前变质作用:雅鲁藏布江西部缝合带罗定岩的钍镁钙同位素","authors":"Gui-Fang Ou , Song-Jie Wang , Hao Deng , Wen-Yong Duan , Xu-Ping Li , Hans-Peter Schertl","doi":"10.1016/j.chemgeo.2024.122473","DOIUrl":null,"url":null,"abstract":"<div><div>Subduction zone metasomatism is critical for Earth's material exchanges, yet the details of slab dehydration, particularly deserpentinization beneath fore-arcs, remain poorly understood. Here, we present Sr–Mg–Ca isotopic data for Purang rodingites from the western Yarlung Zangbo suture zone (YZSZ), a remnant of the Neo-Tethys Ocean that was subducted during the collision between the Indian and Eurasian Plates. The rodingites, occurring as centimeter- to meter-sized veins and blocks in serpentinized harburgite, are dominated by amphibolite- to greenschist-facies minerals like tremolite, magnesiohornblende, and chlorite. Their cumulate textures and rare earth element patterns resemble troctolite or gabbronorite, presumably formed beneath a seafloor spreading center. The rodingites are enriched in large ion lithophile elements and depleted in high field strength elements, with higher Sr/Nb and Ba/La and lower Nb/U and Ce/Pb ratios than mid-ocean ridge basalts (MORB) and rodingites formed through seawater or serpentinizing fluid alteration of MORB-like protoliths. They also exhibit higher initial <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.7067–0.7075) and elevated δ<sup>26</sup>Mg values (−0.22 ± 0.07 ‰ to −0.13 ± 0.02 ‰) compared to unaltered oceanic basalts, while their δ<sup>44/40</sup>Ca values (0.72 ± 0.02 ‰ to 0.87 ± 0.03 ‰) remain similar to MORB. These signatures point to a metasomatic process beyond seafloor alteration, suggesting modification of a MOR-derived protolith in the fore-arc mantle at slab depths of <40 km, driven by Sr- and Mg-rich fluids from clay-rich sediments and serpentinized mantle. The measured Sr, Mg and Ca isotope compositions can be reproduced by mixing a MORB-like protolith with hybrid fluids derived from varying proportions of sedimentary clays and serpentinized peridotite. Combined with previous studies on YZSZ metamorphic soles, we propose that this fore-arc metasomatism occurred during the early Cretaceous, concurrent with the incipient subduction of the Neo-Tethys oceanic rocks. These results highlight the significance of deserpentinization at shallow fore-arc mantle settings during subduction initiation, suggesting that slab dehydration is more complex than previously recognized.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"671 ","pages":"Article 122473"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fore-arc metasomatism by hybrid slab fluids during subduction initiation: Sr–Mg–Ca isotopes of rodingite, western Yarlung Zangbo suture zone\",\"authors\":\"Gui-Fang Ou , Song-Jie Wang , Hao Deng , Wen-Yong Duan , Xu-Ping Li , Hans-Peter Schertl\",\"doi\":\"10.1016/j.chemgeo.2024.122473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Subduction zone metasomatism is critical for Earth's material exchanges, yet the details of slab dehydration, particularly deserpentinization beneath fore-arcs, remain poorly understood. Here, we present Sr–Mg–Ca isotopic data for Purang rodingites from the western Yarlung Zangbo suture zone (YZSZ), a remnant of the Neo-Tethys Ocean that was subducted during the collision between the Indian and Eurasian Plates. The rodingites, occurring as centimeter- to meter-sized veins and blocks in serpentinized harburgite, are dominated by amphibolite- to greenschist-facies minerals like tremolite, magnesiohornblende, and chlorite. Their cumulate textures and rare earth element patterns resemble troctolite or gabbronorite, presumably formed beneath a seafloor spreading center. The rodingites are enriched in large ion lithophile elements and depleted in high field strength elements, with higher Sr/Nb and Ba/La and lower Nb/U and Ce/Pb ratios than mid-ocean ridge basalts (MORB) and rodingites formed through seawater or serpentinizing fluid alteration of MORB-like protoliths. They also exhibit higher initial <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.7067–0.7075) and elevated δ<sup>26</sup>Mg values (−0.22 ± 0.07 ‰ to −0.13 ± 0.02 ‰) compared to unaltered oceanic basalts, while their δ<sup>44/40</sup>Ca values (0.72 ± 0.02 ‰ to 0.87 ± 0.03 ‰) remain similar to MORB. These signatures point to a metasomatic process beyond seafloor alteration, suggesting modification of a MOR-derived protolith in the fore-arc mantle at slab depths of <40 km, driven by Sr- and Mg-rich fluids from clay-rich sediments and serpentinized mantle. The measured Sr, Mg and Ca isotope compositions can be reproduced by mixing a MORB-like protolith with hybrid fluids derived from varying proportions of sedimentary clays and serpentinized peridotite. Combined with previous studies on YZSZ metamorphic soles, we propose that this fore-arc metasomatism occurred during the early Cretaceous, concurrent with the incipient subduction of the Neo-Tethys oceanic rocks. These results highlight the significance of deserpentinization at shallow fore-arc mantle settings during subduction initiation, suggesting that slab dehydration is more complex than previously recognized.</div></div>\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"671 \",\"pages\":\"Article 122473\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009254124005539\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254124005539","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Fore-arc metasomatism by hybrid slab fluids during subduction initiation: Sr–Mg–Ca isotopes of rodingite, western Yarlung Zangbo suture zone
Subduction zone metasomatism is critical for Earth's material exchanges, yet the details of slab dehydration, particularly deserpentinization beneath fore-arcs, remain poorly understood. Here, we present Sr–Mg–Ca isotopic data for Purang rodingites from the western Yarlung Zangbo suture zone (YZSZ), a remnant of the Neo-Tethys Ocean that was subducted during the collision between the Indian and Eurasian Plates. The rodingites, occurring as centimeter- to meter-sized veins and blocks in serpentinized harburgite, are dominated by amphibolite- to greenschist-facies minerals like tremolite, magnesiohornblende, and chlorite. Their cumulate textures and rare earth element patterns resemble troctolite or gabbronorite, presumably formed beneath a seafloor spreading center. The rodingites are enriched in large ion lithophile elements and depleted in high field strength elements, with higher Sr/Nb and Ba/La and lower Nb/U and Ce/Pb ratios than mid-ocean ridge basalts (MORB) and rodingites formed through seawater or serpentinizing fluid alteration of MORB-like protoliths. They also exhibit higher initial 87Sr/86Sr ratios (0.7067–0.7075) and elevated δ26Mg values (−0.22 ± 0.07 ‰ to −0.13 ± 0.02 ‰) compared to unaltered oceanic basalts, while their δ44/40Ca values (0.72 ± 0.02 ‰ to 0.87 ± 0.03 ‰) remain similar to MORB. These signatures point to a metasomatic process beyond seafloor alteration, suggesting modification of a MOR-derived protolith in the fore-arc mantle at slab depths of <40 km, driven by Sr- and Mg-rich fluids from clay-rich sediments and serpentinized mantle. The measured Sr, Mg and Ca isotope compositions can be reproduced by mixing a MORB-like protolith with hybrid fluids derived from varying proportions of sedimentary clays and serpentinized peridotite. Combined with previous studies on YZSZ metamorphic soles, we propose that this fore-arc metasomatism occurred during the early Cretaceous, concurrent with the incipient subduction of the Neo-Tethys oceanic rocks. These results highlight the significance of deserpentinization at shallow fore-arc mantle settings during subduction initiation, suggesting that slab dehydration is more complex than previously recognized.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.