利用偏振光观测功率器件碳化硅晶片缺陷表征技术的进展

IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY Journal of Crystal Growth Pub Date : 2024-11-05 DOI:10.1016/j.jcrysgro.2024.127982
Shunta Harada , Kenta Murayama
{"title":"利用偏振光观测功率器件碳化硅晶片缺陷表征技术的进展","authors":"Shunta Harada ,&nbsp;Kenta Murayama","doi":"10.1016/j.jcrysgro.2024.127982","DOIUrl":null,"url":null,"abstract":"<div><div>This short review provides an overview of advancements in the characterization of defects in silicon carbide (SiC) wafers using polarized light observation. SiC, which has a wide bandgap and excellent thermal and electrical properties, is widely used in power devices. However, various defects such as threading screw dislocations (TSD), threading edge dislocations (TED), and basal plane dislocations (BPD) can significantly affect device performance and reliability. Polarized light observation offers a nondestructive method for visualizing these defects and analyzing the stress fields induced within the SiC crystal structure. This paper summarizes recent developments in this technique, including the application of analyzer rotation to enhance the contrast in defect visualization. Furthermore, the development of automated systems for rapid wafer evaluation is discussed, highlighting the role of polarized light observation in improving quality control and production efficiency in SiC power device manufacturing.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 127982"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in defect characterization techniques using polarized light observation in SiC wafers for power devices\",\"authors\":\"Shunta Harada ,&nbsp;Kenta Murayama\",\"doi\":\"10.1016/j.jcrysgro.2024.127982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This short review provides an overview of advancements in the characterization of defects in silicon carbide (SiC) wafers using polarized light observation. SiC, which has a wide bandgap and excellent thermal and electrical properties, is widely used in power devices. However, various defects such as threading screw dislocations (TSD), threading edge dislocations (TED), and basal plane dislocations (BPD) can significantly affect device performance and reliability. Polarized light observation offers a nondestructive method for visualizing these defects and analyzing the stress fields induced within the SiC crystal structure. This paper summarizes recent developments in this technique, including the application of analyzer rotation to enhance the contrast in defect visualization. Furthermore, the development of automated systems for rapid wafer evaluation is discussed, highlighting the role of polarized light observation in improving quality control and production efficiency in SiC power device manufacturing.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"650 \",\"pages\":\"Article 127982\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824004202\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004202","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

这篇短文概述了利用偏振光观测碳化硅(SiC)晶片缺陷表征方面的进展。碳化硅具有宽带隙和优异的热性能和电性能,被广泛应用于功率器件中。然而,各种缺陷,如螺纹螺旋位错(TSD)、螺纹边缘位错(TED)和基底面位错(BPD)会严重影响器件的性能和可靠性。偏振光观测提供了一种无损方法,可用于观察这些缺陷并分析在 SiC 晶体结构中引起的应力场。本文总结了这一技术的最新发展,包括应用分析仪旋转来增强缺陷可视化的对比度。此外,本文还讨论了用于快速晶片评估的自动化系统的开发,强调了偏振光观测在提高碳化硅功率器件制造的质量控制和生产效率方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in defect characterization techniques using polarized light observation in SiC wafers for power devices
This short review provides an overview of advancements in the characterization of defects in silicon carbide (SiC) wafers using polarized light observation. SiC, which has a wide bandgap and excellent thermal and electrical properties, is widely used in power devices. However, various defects such as threading screw dislocations (TSD), threading edge dislocations (TED), and basal plane dislocations (BPD) can significantly affect device performance and reliability. Polarized light observation offers a nondestructive method for visualizing these defects and analyzing the stress fields induced within the SiC crystal structure. This paper summarizes recent developments in this technique, including the application of analyzer rotation to enhance the contrast in defect visualization. Furthermore, the development of automated systems for rapid wafer evaluation is discussed, highlighting the role of polarized light observation in improving quality control and production efficiency in SiC power device manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
期刊最新文献
Role of synthesis temperature in the formation of ZnO nanoparticles via the Sol-Gel process Editorial Board Thermal atomic layer deposition of Ga2O3 films using trimethylgallium and H2O Doping behavior and occurrence state of Na impurity in α-calcium sulfate hemihydrate prepared in Na2SO4 solution Quantum chemical study of trimethylindium and trimethylgallium gas-phase reaction pathways in InGaN MOCVD growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1