{"title":"验证局部电子计数规则的 SAT 求解器驱动方法","authors":"Tetsuji Kuboyama , Akira Kusaba","doi":"10.1016/j.jcrysgro.2024.127927","DOIUrl":null,"url":null,"abstract":"<div><div>Determining large, complex surface structures is essential for understanding and modeling crystal growth. For semiconductor surfaces, the electron counting (EC) rule is known to be useful for predicting surface stability. In this study, a scheme is proposed to automatically determine if a sampled surface structure locally satisfies the EC rule using a Boolean Satisfiability Problem (SAT) solver. This automatic determination is demonstrated on the GaN(0001)-(6 × 6) surface system with H and Ga adsorption as an example. The scheme is also applicable to the automatic generation of surface structures that are expected to be relatively stable, and is expected to accelerate the study of large and complex surface structures of various semiconductor materials.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 127927"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAT solver-driven approach for validating local electron counting rule\",\"authors\":\"Tetsuji Kuboyama , Akira Kusaba\",\"doi\":\"10.1016/j.jcrysgro.2024.127927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Determining large, complex surface structures is essential for understanding and modeling crystal growth. For semiconductor surfaces, the electron counting (EC) rule is known to be useful for predicting surface stability. In this study, a scheme is proposed to automatically determine if a sampled surface structure locally satisfies the EC rule using a Boolean Satisfiability Problem (SAT) solver. This automatic determination is demonstrated on the GaN(0001)-(6 × 6) surface system with H and Ga adsorption as an example. The scheme is also applicable to the automatic generation of surface structures that are expected to be relatively stable, and is expected to accelerate the study of large and complex surface structures of various semiconductor materials.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"650 \",\"pages\":\"Article 127927\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824003658\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824003658","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
确定复杂的大型表面结构对于理解晶体生长和建立晶体生长模型至关重要。对于半导体表面,已知电子计数(EC)规则有助于预测表面稳定性。本研究提出了一种方案,利用布尔可满足性问题(SAT)求解器自动确定采样表面结构是否局部满足 EC 规则。以 GaN(0001)-(6 × 6) 表面系统吸附 H 和 Ga 为例,演示了这种自动判定方法。该方案还适用于自动生成预期相对稳定的表面结构,有望加速对各种半导体材料的大型复杂表面结构的研究。
SAT solver-driven approach for validating local electron counting rule
Determining large, complex surface structures is essential for understanding and modeling crystal growth. For semiconductor surfaces, the electron counting (EC) rule is known to be useful for predicting surface stability. In this study, a scheme is proposed to automatically determine if a sampled surface structure locally satisfies the EC rule using a Boolean Satisfiability Problem (SAT) solver. This automatic determination is demonstrated on the GaN(0001)-(6 × 6) surface system with H and Ga adsorption as an example. The scheme is also applicable to the automatic generation of surface structures that are expected to be relatively stable, and is expected to accelerate the study of large and complex surface structures of various semiconductor materials.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.