通过引导增强可视分析系统:任务驱动方法

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-11-10 DOI:10.1016/j.cag.2024.104121
Ignacio Pérez-Messina, Davide Ceneda, Silvia Miksch
{"title":"通过引导增强可视分析系统:任务驱动方法","authors":"Ignacio Pérez-Messina,&nbsp;Davide Ceneda,&nbsp;Silvia Miksch","doi":"10.1016/j.cag.2024.104121","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing Visual Analytics (VA) systems with guidance, such as the automated provision of data-driven suggestions and answers to the user’s task, is becoming increasingly important and common. However, how to design such systems remains a challenging task. We present a methodology to aid and structure the design of guidance for enhancing VA solutions consisting of four steps: (S1) defining the target of analysis, (S2) identifying the user tasks, (S3) describing the guidance tasks, and (S4) placing guidance. In summary, our proposed methodology specifies a space of possible user tasks and maps them to the corresponding space of guidance tasks, using recent abstract task typologies for guidance and visualization. We exemplify this methodology through two case studies from the literature: <em>Overview</em>, a system for exploring and labeling document collections aimed at journalists, and <em>DoRIAH</em>, a system for historical imagery analysis. We show how our methodology enriches existing VA solutions with guidance and provides a structured way to design guidance in complex VA scenarios.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"125 ","pages":"Article 104121"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Visual Analytics systems with guidance: A task-driven methodology\",\"authors\":\"Ignacio Pérez-Messina,&nbsp;Davide Ceneda,&nbsp;Silvia Miksch\",\"doi\":\"10.1016/j.cag.2024.104121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enhancing Visual Analytics (VA) systems with guidance, such as the automated provision of data-driven suggestions and answers to the user’s task, is becoming increasingly important and common. However, how to design such systems remains a challenging task. We present a methodology to aid and structure the design of guidance for enhancing VA solutions consisting of four steps: (S1) defining the target of analysis, (S2) identifying the user tasks, (S3) describing the guidance tasks, and (S4) placing guidance. In summary, our proposed methodology specifies a space of possible user tasks and maps them to the corresponding space of guidance tasks, using recent abstract task typologies for guidance and visualization. We exemplify this methodology through two case studies from the literature: <em>Overview</em>, a system for exploring and labeling document collections aimed at journalists, and <em>DoRIAH</em>, a system for historical imagery analysis. We show how our methodology enriches existing VA solutions with guidance and provides a structured way to design guidance in complex VA scenarios.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"125 \",\"pages\":\"Article 104121\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002565\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002565","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

增强可视化分析(VA)系统的指导功能,如针对用户的任务自动提供数据驱动的建议和答案,正变得越来越重要和普遍。然而,如何设计这样的系统仍然是一项具有挑战性的任务。我们提出了一种方法来帮助和组织指导设计,以增强虚拟机构解决方案,包括四个步骤:(S1)定义分析目标;(S2)确定用户任务;(S3)描述引导任务;(S4)设置引导。总之,我们提出的方法指定了可能的用户任务空间,并将其映射到相应的引导任务空间,同时使用最新的引导和可视化抽象任务类型。我们通过文献中的两个案例研究来举例说明这种方法:概述》是一个针对新闻记者的文档集探索和标注系统,《DoRIAH》是一个历史图像分析系统。我们展示了我们的方法如何通过指导来丰富现有的虚拟现实解决方案,并为在复杂的虚拟现实场景中设计指导提供了一种结构化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Visual Analytics systems with guidance: A task-driven methodology
Enhancing Visual Analytics (VA) systems with guidance, such as the automated provision of data-driven suggestions and answers to the user’s task, is becoming increasingly important and common. However, how to design such systems remains a challenging task. We present a methodology to aid and structure the design of guidance for enhancing VA solutions consisting of four steps: (S1) defining the target of analysis, (S2) identifying the user tasks, (S3) describing the guidance tasks, and (S4) placing guidance. In summary, our proposed methodology specifies a space of possible user tasks and maps them to the corresponding space of guidance tasks, using recent abstract task typologies for guidance and visualization. We exemplify this methodology through two case studies from the literature: Overview, a system for exploring and labeling document collections aimed at journalists, and DoRIAH, a system for historical imagery analysis. We show how our methodology enriches existing VA solutions with guidance and provides a structured way to design guidance in complex VA scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Enhancing Visual Analytics systems with guidance: A task-driven methodology Learning geometric complexes for 3D shape classification RenalViz: Visual analysis of cohorts with chronic kidney disease Enhancing semantic mapping in text-to-image diffusion via Gather-and-Bind CGLight: An effective indoor illumination estimation method based on improved convmixer and GauGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1