Souhaila Meneceur , Salah Eddine Laouini , Hamdi Ali Mohammed , Abderrhmane Bouafia , Chaima Salmi , Johar Amin Ahmed Abdullah , Fahad Alharthi
{"title":"生态友好型 ZnO/CuO/Ni 纳米复合材料:增强光催化染料吸附和氢进化,实现可持续能源和水净化","authors":"Souhaila Meneceur , Salah Eddine Laouini , Hamdi Ali Mohammed , Abderrhmane Bouafia , Chaima Salmi , Johar Amin Ahmed Abdullah , Fahad Alharthi","doi":"10.1016/j.jcrysgro.2024.127984","DOIUrl":null,"url":null,"abstract":"<div><div>Nanomaterials and nanocomposites, known for their unique properties, are increasingly vital in diverse fields such as energy and environmental remediation. This study presents biogenically synthesized ZnO/CuO/Ni nanocomposites using <em>Mentha Pulegium L.</em> leaf extract. The investigation focuses on their applications in photocatalytic dye adsorption and hydrogen evolution. Characterization via XRD, FTIR spectroscopy, SEM, and UV–visible spectroscopy confirms the nanocomposites’ semiconducting nature with a narrow bandgap energy of 2.46 eV. Structural analysis reveals cubic crystal structures with an average crystallite size of 29.1 nm. Under solar irradiation, the nanocomposites exhibit exceptional photocatalytic activity, degrading 99 % of 4-BP and 98 % of TB. Moreover, they achieve a notable hydrogen evolution rate of 5.79 mmol/g over six hours. These results underscore the efficacy of ZnO/CuO/Ni nanocomposites as catalysts for sustainable energy and water purification. Employing <em>Mentha Pulegium L.</em> extract for environmentally friendly synthesis enhances their photocatalytic properties, offering a cost-effective route to sustainable energy and clean water technologies.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 127984"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-Friendly ZnO/CuO/Ni Nanocomposites: Enhanced photocatalytic dye adsorption and hydrogen evolution for sustainable energy and water purification\",\"authors\":\"Souhaila Meneceur , Salah Eddine Laouini , Hamdi Ali Mohammed , Abderrhmane Bouafia , Chaima Salmi , Johar Amin Ahmed Abdullah , Fahad Alharthi\",\"doi\":\"10.1016/j.jcrysgro.2024.127984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanomaterials and nanocomposites, known for their unique properties, are increasingly vital in diverse fields such as energy and environmental remediation. This study presents biogenically synthesized ZnO/CuO/Ni nanocomposites using <em>Mentha Pulegium L.</em> leaf extract. The investigation focuses on their applications in photocatalytic dye adsorption and hydrogen evolution. Characterization via XRD, FTIR spectroscopy, SEM, and UV–visible spectroscopy confirms the nanocomposites’ semiconducting nature with a narrow bandgap energy of 2.46 eV. Structural analysis reveals cubic crystal structures with an average crystallite size of 29.1 nm. Under solar irradiation, the nanocomposites exhibit exceptional photocatalytic activity, degrading 99 % of 4-BP and 98 % of TB. Moreover, they achieve a notable hydrogen evolution rate of 5.79 mmol/g over six hours. These results underscore the efficacy of ZnO/CuO/Ni nanocomposites as catalysts for sustainable energy and water purification. Employing <em>Mentha Pulegium L.</em> extract for environmentally friendly synthesis enhances their photocatalytic properties, offering a cost-effective route to sustainable energy and clean water technologies.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"650 \",\"pages\":\"Article 127984\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824004226\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004226","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Eco-Friendly ZnO/CuO/Ni Nanocomposites: Enhanced photocatalytic dye adsorption and hydrogen evolution for sustainable energy and water purification
Nanomaterials and nanocomposites, known for their unique properties, are increasingly vital in diverse fields such as energy and environmental remediation. This study presents biogenically synthesized ZnO/CuO/Ni nanocomposites using Mentha Pulegium L. leaf extract. The investigation focuses on their applications in photocatalytic dye adsorption and hydrogen evolution. Characterization via XRD, FTIR spectroscopy, SEM, and UV–visible spectroscopy confirms the nanocomposites’ semiconducting nature with a narrow bandgap energy of 2.46 eV. Structural analysis reveals cubic crystal structures with an average crystallite size of 29.1 nm. Under solar irradiation, the nanocomposites exhibit exceptional photocatalytic activity, degrading 99 % of 4-BP and 98 % of TB. Moreover, they achieve a notable hydrogen evolution rate of 5.79 mmol/g over six hours. These results underscore the efficacy of ZnO/CuO/Ni nanocomposites as catalysts for sustainable energy and water purification. Employing Mentha Pulegium L. extract for environmentally friendly synthesis enhances their photocatalytic properties, offering a cost-effective route to sustainable energy and clean water technologies.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.