{"title":"采用最优功率分配策略的 D2D 辅助合作上行 NOMA 系统的保密性能","authors":"Kankanala Kavitha, Suseela Vappangi","doi":"10.1016/j.dsp.2024.104860","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the physical-layer security (PLS) aspects of the uplink cooperative non-orthogonal multiple access (NOMA) system in the context of two user scenario. More specifically, this work employs device-to-device (D2D) pair users (i.e., <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) to further improve the spectral efficiency (SE) of the proposed cooperative uplink NOMA (CU-NOMA) system. One D2D user acts as a decode-and-forward relay, improving the performance of both the cell-edge user (CU) and another D2D user i.e., (<span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>). We analyze the secrecy performance of CU and D2 under perfect and imperfect successive interference cancellation (SIC), and optimizes power allocation (PA) to boost the performance. The proposed CU-NOMA system is evaluated in terms of its performance metrics like ergodic secrecy capacity (ESC), ergodic secrecy sum capacity (ESSC), non-zero secrecy capacity (NSC), effective secrecy throughput (EST), and secrecy outage probability (SOP) under the presence of an external eavesdropper (Eav). In addition, this work derives the closed-form analytical expressions of ESC, NSC, EST, and SOP metrics for both CU and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> under perfect SIC (pSIC) and imperfect (ipSIC) cases in order to characterize the secrecy performance of the proposed secure CU-NOMA network. Further, the outcomes of the simulations are shown as evidence for both the validation of the mathematical analysis and the performance of the method being suggested. The simulation result analysis of this work infers that the secrecy performance of CU-NOMA system with optimal PA exhibits superior performance than that of the fixed PA scheme.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104860"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secrecy performance of D2D assisted cooperative uplink NOMA system with optimal power allocation strategy\",\"authors\":\"Kankanala Kavitha, Suseela Vappangi\",\"doi\":\"10.1016/j.dsp.2024.104860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the physical-layer security (PLS) aspects of the uplink cooperative non-orthogonal multiple access (NOMA) system in the context of two user scenario. More specifically, this work employs device-to-device (D2D) pair users (i.e., <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) to further improve the spectral efficiency (SE) of the proposed cooperative uplink NOMA (CU-NOMA) system. One D2D user acts as a decode-and-forward relay, improving the performance of both the cell-edge user (CU) and another D2D user i.e., (<span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>). We analyze the secrecy performance of CU and D2 under perfect and imperfect successive interference cancellation (SIC), and optimizes power allocation (PA) to boost the performance. The proposed CU-NOMA system is evaluated in terms of its performance metrics like ergodic secrecy capacity (ESC), ergodic secrecy sum capacity (ESSC), non-zero secrecy capacity (NSC), effective secrecy throughput (EST), and secrecy outage probability (SOP) under the presence of an external eavesdropper (Eav). In addition, this work derives the closed-form analytical expressions of ESC, NSC, EST, and SOP metrics for both CU and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> under perfect SIC (pSIC) and imperfect (ipSIC) cases in order to characterize the secrecy performance of the proposed secure CU-NOMA network. Further, the outcomes of the simulations are shown as evidence for both the validation of the mathematical analysis and the performance of the method being suggested. The simulation result analysis of this work infers that the secrecy performance of CU-NOMA system with optimal PA exhibits superior performance than that of the fixed PA scheme.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104860\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004846\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004846","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Secrecy performance of D2D assisted cooperative uplink NOMA system with optimal power allocation strategy
This paper investigates the physical-layer security (PLS) aspects of the uplink cooperative non-orthogonal multiple access (NOMA) system in the context of two user scenario. More specifically, this work employs device-to-device (D2D) pair users (i.e., , and ) to further improve the spectral efficiency (SE) of the proposed cooperative uplink NOMA (CU-NOMA) system. One D2D user acts as a decode-and-forward relay, improving the performance of both the cell-edge user (CU) and another D2D user i.e., (). We analyze the secrecy performance of CU and D2 under perfect and imperfect successive interference cancellation (SIC), and optimizes power allocation (PA) to boost the performance. The proposed CU-NOMA system is evaluated in terms of its performance metrics like ergodic secrecy capacity (ESC), ergodic secrecy sum capacity (ESSC), non-zero secrecy capacity (NSC), effective secrecy throughput (EST), and secrecy outage probability (SOP) under the presence of an external eavesdropper (Eav). In addition, this work derives the closed-form analytical expressions of ESC, NSC, EST, and SOP metrics for both CU and under perfect SIC (pSIC) and imperfect (ipSIC) cases in order to characterize the secrecy performance of the proposed secure CU-NOMA network. Further, the outcomes of the simulations are shown as evidence for both the validation of the mathematical analysis and the performance of the method being suggested. The simulation result analysis of this work infers that the secrecy performance of CU-NOMA system with optimal PA exhibits superior performance than that of the fixed PA scheme.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,