金属纳米粒子在植物中的分析、积累、转化和影响

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2024-11-10 DOI:10.1016/j.jece.2024.114748
Wenhua Li , Yan Tan , Guanjia Shang , Liqun Chen , Zhibin Wu , Yiqing Lin , Lin Luo , Yuan Yang
{"title":"金属纳米粒子在植物中的分析、积累、转化和影响","authors":"Wenhua Li ,&nbsp;Yan Tan ,&nbsp;Guanjia Shang ,&nbsp;Liqun Chen ,&nbsp;Zhibin Wu ,&nbsp;Yiqing Lin ,&nbsp;Lin Luo ,&nbsp;Yuan Yang","doi":"10.1016/j.jece.2024.114748","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid increase application of metallic nanoparticles (MNPs) in agriculture and related fields, potential risk of MNPs released to agricultural systems have been aroused intensive attention. A comprehensive investigation of the interaction between MNPs and plant including the uptake, accumulation and transformation in plant and its ecological effect of plants induced by MNPs may improve production and food safety of the crop. In this work, emerging techniques for the characterization, determination and sample pretreatment of metallic nanoparticles in biological matrices were reviewed. And the recent research progress on the MNPs’ uptake, accumulation, transformation and its nanotoxicity of plants were summarized. Finally, the current challenges in this area are pointed out and developments of future investigation are also discussed.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114748"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis, accumulation, transformation, and impact of metallic nanoparticles in plants\",\"authors\":\"Wenhua Li ,&nbsp;Yan Tan ,&nbsp;Guanjia Shang ,&nbsp;Liqun Chen ,&nbsp;Zhibin Wu ,&nbsp;Yiqing Lin ,&nbsp;Lin Luo ,&nbsp;Yuan Yang\",\"doi\":\"10.1016/j.jece.2024.114748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid increase application of metallic nanoparticles (MNPs) in agriculture and related fields, potential risk of MNPs released to agricultural systems have been aroused intensive attention. A comprehensive investigation of the interaction between MNPs and plant including the uptake, accumulation and transformation in plant and its ecological effect of plants induced by MNPs may improve production and food safety of the crop. In this work, emerging techniques for the characterization, determination and sample pretreatment of metallic nanoparticles in biological matrices were reviewed. And the recent research progress on the MNPs’ uptake, accumulation, transformation and its nanotoxicity of plants were summarized. Finally, the current challenges in this area are pointed out and developments of future investigation are also discussed.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114748\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221334372402880X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221334372402880X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着金属纳米粒子(MNPs)在农业及相关领域应用的迅速增加,MNPs 释放到农业系统中的潜在风险引起了人们的广泛关注。全面研究 MNPs 与植物之间的相互作用,包括 MNPs 在植物体内的吸收、积累和转化及其对植物的生态效应,可提高作物的产量和食品安全。本研究综述了生物基质中金属纳米粒子的表征、测定和样品预处理的新兴技术。此外,还总结了有关植物对 MNPs 的吸收、积累、转化及其纳米毒性的最新研究进展。最后,指出了该领域目前面临的挑战,并讨论了未来研究的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis, accumulation, transformation, and impact of metallic nanoparticles in plants
With the rapid increase application of metallic nanoparticles (MNPs) in agriculture and related fields, potential risk of MNPs released to agricultural systems have been aroused intensive attention. A comprehensive investigation of the interaction between MNPs and plant including the uptake, accumulation and transformation in plant and its ecological effect of plants induced by MNPs may improve production and food safety of the crop. In this work, emerging techniques for the characterization, determination and sample pretreatment of metallic nanoparticles in biological matrices were reviewed. And the recent research progress on the MNPs’ uptake, accumulation, transformation and its nanotoxicity of plants were summarized. Finally, the current challenges in this area are pointed out and developments of future investigation are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
Research progress of simultaneous nitrogen and phosphorus removal adsorbents in wastewater treatment Recent progress of piezoelectric materials applied in photocatalytic CO2 reduction: A review Recent advances and future prospects of MXene-based photocatalysts in environmental remediations Layered double hydroxides as versatile materials for detoxification of hexavalent chromium: Mechanism, kinetics, and environmental factors Pyruvate-formate lyase and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1