{"title":"塑料废弃物与木质纤维素生物质的水热协同处理及其作为超级电容器材料的应用","authors":"Sarath Sekar , Chitra Devi Venkatachalam , Mothil Sengottian , Sathish Raam Ravichandran","doi":"10.1016/j.est.2024.114475","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and optimizing a continuous process for hydrothermal conversion of biomass is critical in increasing the production capacity of valuable products. This study investigates the use of a continuous high-pressure single screw reactor for converting a mixed feedstock comprising sawdust and polypropylene wastes into a carbon-rich solid product that can be used in energy storage devices, especially as supercapacitor material. The process parameters for the continuous operation were optimized using the Box-Behnken design, the maximum yield obtained after the optimization was to be 50.15 % at 305.3 °C. Subsequently, the produced solid (biochar) was further activated using potassium hydroxide (KOH) and sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) to improve the surface properties which would eventually improve the energy storage capability of the material. Electrochemical tests conducted on pristine biochar, KOH, and H<sub>2</sub>SO<sub>4</sub> activated biochar showed that the specific capacitance values of 196.8 F/g for non-activated biochar, 403.67 F/g for KOH-activated biochar, and 325.96 F/g for H<sub>2</sub>SO<sub>4</sub>-activated biochar at a current density of 1 A/g. Energy density analysis indicated that the alkali and acid-activated biochar had energy densities of 45.53 Wh/kg and 36.0 Wh/kg, with corresponding power densities of 427.5 W/kg and 423.0 W/kg, respectively. These findings highlight the feasibility of utilizing hydrothermal co-processing along with a continuous process as a sustainable and efficient approach for waste management and the production of high-performance energy storage materials.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114475"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal co-processing of plastic waste with lignocellulosic biomass and its application as a supercapacitor material\",\"authors\":\"Sarath Sekar , Chitra Devi Venkatachalam , Mothil Sengottian , Sathish Raam Ravichandran\",\"doi\":\"10.1016/j.est.2024.114475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing and optimizing a continuous process for hydrothermal conversion of biomass is critical in increasing the production capacity of valuable products. This study investigates the use of a continuous high-pressure single screw reactor for converting a mixed feedstock comprising sawdust and polypropylene wastes into a carbon-rich solid product that can be used in energy storage devices, especially as supercapacitor material. The process parameters for the continuous operation were optimized using the Box-Behnken design, the maximum yield obtained after the optimization was to be 50.15 % at 305.3 °C. Subsequently, the produced solid (biochar) was further activated using potassium hydroxide (KOH) and sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) to improve the surface properties which would eventually improve the energy storage capability of the material. Electrochemical tests conducted on pristine biochar, KOH, and H<sub>2</sub>SO<sub>4</sub> activated biochar showed that the specific capacitance values of 196.8 F/g for non-activated biochar, 403.67 F/g for KOH-activated biochar, and 325.96 F/g for H<sub>2</sub>SO<sub>4</sub>-activated biochar at a current density of 1 A/g. Energy density analysis indicated that the alkali and acid-activated biochar had energy densities of 45.53 Wh/kg and 36.0 Wh/kg, with corresponding power densities of 427.5 W/kg and 423.0 W/kg, respectively. These findings highlight the feasibility of utilizing hydrothermal co-processing along with a continuous process as a sustainable and efficient approach for waste management and the production of high-performance energy storage materials.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"104 \",\"pages\":\"Article 114475\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24040611\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040611","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hydrothermal co-processing of plastic waste with lignocellulosic biomass and its application as a supercapacitor material
Designing and optimizing a continuous process for hydrothermal conversion of biomass is critical in increasing the production capacity of valuable products. This study investigates the use of a continuous high-pressure single screw reactor for converting a mixed feedstock comprising sawdust and polypropylene wastes into a carbon-rich solid product that can be used in energy storage devices, especially as supercapacitor material. The process parameters for the continuous operation were optimized using the Box-Behnken design, the maximum yield obtained after the optimization was to be 50.15 % at 305.3 °C. Subsequently, the produced solid (biochar) was further activated using potassium hydroxide (KOH) and sulfuric acid (H2SO4) to improve the surface properties which would eventually improve the energy storage capability of the material. Electrochemical tests conducted on pristine biochar, KOH, and H2SO4 activated biochar showed that the specific capacitance values of 196.8 F/g for non-activated biochar, 403.67 F/g for KOH-activated biochar, and 325.96 F/g for H2SO4-activated biochar at a current density of 1 A/g. Energy density analysis indicated that the alkali and acid-activated biochar had energy densities of 45.53 Wh/kg and 36.0 Wh/kg, with corresponding power densities of 427.5 W/kg and 423.0 W/kg, respectively. These findings highlight the feasibility of utilizing hydrothermal co-processing along with a continuous process as a sustainable and efficient approach for waste management and the production of high-performance energy storage materials.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.