带有化学反应和热辐射的 MHD Williamson 纳米流体的指数拉伸薄片效应

S P Pallavi , M.B Veena , Jagadish. V. Tawade , Nitiraj Kulkarni , Sami Ullah Khan , M. Waqas , Manish Gupta , Saja Abdulrahman Althobaiti
{"title":"带有化学反应和热辐射的 MHD Williamson 纳米流体的指数拉伸薄片效应","authors":"S P Pallavi ,&nbsp;M.B Veena ,&nbsp;Jagadish. V. Tawade ,&nbsp;Nitiraj Kulkarni ,&nbsp;Sami Ullah Khan ,&nbsp;M. Waqas ,&nbsp;Manish Gupta ,&nbsp;Saja Abdulrahman Althobaiti","doi":"10.1016/j.padiff.2024.100975","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the combined effects of heat radiation, viscous dissipation, and chemical reactions on the steady flow of Williamson nanofluid over an exponentially stretched sheet. The Governing non-linear Partial Differential Equations (PDE's), converted to couple nonlinear Ordinary ODE's by using similarity transformation, which are solved numerically using the Runge-Kutta-Fehlberg method along with the shooting technique. The study shows detailed analysis of the behaviour of Williamson nanofluid under the influence of thermal radiation and magnetic fields, having relevant industrial applications in cooling technologies and polymer processing. The results show that increasing the magnetic field parameter reduces the fluid velocity, while higher thermal radiation and Brownian motion parameters significantly enhance heat transfer rate withing the boundary region.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100975"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of exponentially stretching sheet for MHD Williamson nanofluid with chemical reaction and thermal radiative\",\"authors\":\"S P Pallavi ,&nbsp;M.B Veena ,&nbsp;Jagadish. V. Tawade ,&nbsp;Nitiraj Kulkarni ,&nbsp;Sami Ullah Khan ,&nbsp;M. Waqas ,&nbsp;Manish Gupta ,&nbsp;Saja Abdulrahman Althobaiti\",\"doi\":\"10.1016/j.padiff.2024.100975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the combined effects of heat radiation, viscous dissipation, and chemical reactions on the steady flow of Williamson nanofluid over an exponentially stretched sheet. The Governing non-linear Partial Differential Equations (PDE's), converted to couple nonlinear Ordinary ODE's by using similarity transformation, which are solved numerically using the Runge-Kutta-Fehlberg method along with the shooting technique. The study shows detailed analysis of the behaviour of Williamson nanofluid under the influence of thermal radiation and magnetic fields, having relevant industrial applications in cooling technologies and polymer processing. The results show that increasing the magnetic field parameter reduces the fluid velocity, while higher thermal radiation and Brownian motion parameters significantly enhance heat transfer rate withing the boundary region.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100975\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了热辐射、粘性耗散和化学反应对威廉姆森纳米流体在指数拉伸片上稳定流动的综合影响。通过相似性转换,将支配性非线性偏微分方程(PDE)转换为耦合非线性普通 ODE,并使用 Runge-Kutta-Fehlberg 方法和射击技术对其进行数值求解。研究详细分析了威廉姆森纳米流体在热辐射和磁场影响下的行为,这些行为在冷却技术和聚合物加工中具有相关的工业应用。结果表明,增加磁场参数会降低流体速度,而增加热辐射和布朗运动参数则会显著提高边界区域的传热速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of exponentially stretching sheet for MHD Williamson nanofluid with chemical reaction and thermal radiative
This paper explores the combined effects of heat radiation, viscous dissipation, and chemical reactions on the steady flow of Williamson nanofluid over an exponentially stretched sheet. The Governing non-linear Partial Differential Equations (PDE's), converted to couple nonlinear Ordinary ODE's by using similarity transformation, which are solved numerically using the Runge-Kutta-Fehlberg method along with the shooting technique. The study shows detailed analysis of the behaviour of Williamson nanofluid under the influence of thermal radiation and magnetic fields, having relevant industrial applications in cooling technologies and polymer processing. The results show that increasing the magnetic field parameter reduces the fluid velocity, while higher thermal radiation and Brownian motion parameters significantly enhance heat transfer rate withing the boundary region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
期刊最新文献
Combined buoyancy and Marangoni convective heat transport of CNT-water nanofluid in an open chamber with influence of magnetic field and isothermal solid block Hydromagnetic blood flow through a channel of varying width bounded by porous media of finite thickness Application of the Atangana–Baleanu operator in Caputo sense for numerical solutions of the time-fractional Burgers–Fisher equation using finite difference approaches A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations Multi-parameter-based Box–Behnken design for optimizing energy transfer rate of Darcy–Forchheimer drag and mixed convective nanofluid flow over a permeable vertical surface with activation energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1