Gang Fang , Daoping Huang , Zhiying Wu , Yan Chen , Yan Li , Yiqi Liu
{"title":"基于集合稀疏学习的在线下一代储层计算的污水处理厂出水水质软传感器","authors":"Gang Fang , Daoping Huang , Zhiying Wu , Yan Chen , Yan Li , Yiqi Liu","doi":"10.1016/j.wroa.2024.100276","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time monitoring of key quality variables is essential and crucial for stable and safe operations of wastewater treatment plants (WWTPs). Next generation reservoir computing (NG-RC) has recently garnered significant attention in quality prediction, such as COD and BOD, as an effective alternative to traditional reservoir computing (RC), then is able to act as a data-driven soft sensor to twin a hardware sensor for quality variable measurements. Unlike RC, NG-RC does not require random sampling matrices to define the weights of recurrent neural networks and has fewer hyperparameters. However, NG-RC is usually used online but trained offline, thus leading to model degradation under dynamic scenarios. This paper proposes a sparse online NG-RC approach to meet the real-time requirements of WWTPs and mitigate the impact of measurement noise on the model. First, inspired by the Woodbury matrix identity, an incremental strategy is designed, using sequentially arriving data blocks to learn the output weights of NG-RC online. Then, an ensemble sparse strategy is combined to alleviate overfitting issues of the prediction model. Moreover, a soft sensor based on the ensemble sparse online NG-RC is developed to perform real-time prediction of quality indicators in wastewater treatment processes. Finally, two datasets from actual WWTPs are used to validate the effectiveness of the proposed model.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100276"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effluent quality soft sensor for wastewater treatment plant with ensemble sparse learning-based online next generation reservoir computing\",\"authors\":\"Gang Fang , Daoping Huang , Zhiying Wu , Yan Chen , Yan Li , Yiqi Liu\",\"doi\":\"10.1016/j.wroa.2024.100276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-time monitoring of key quality variables is essential and crucial for stable and safe operations of wastewater treatment plants (WWTPs). Next generation reservoir computing (NG-RC) has recently garnered significant attention in quality prediction, such as COD and BOD, as an effective alternative to traditional reservoir computing (RC), then is able to act as a data-driven soft sensor to twin a hardware sensor for quality variable measurements. Unlike RC, NG-RC does not require random sampling matrices to define the weights of recurrent neural networks and has fewer hyperparameters. However, NG-RC is usually used online but trained offline, thus leading to model degradation under dynamic scenarios. This paper proposes a sparse online NG-RC approach to meet the real-time requirements of WWTPs and mitigate the impact of measurement noise on the model. First, inspired by the Woodbury matrix identity, an incremental strategy is designed, using sequentially arriving data blocks to learn the output weights of NG-RC online. Then, an ensemble sparse strategy is combined to alleviate overfitting issues of the prediction model. Moreover, a soft sensor based on the ensemble sparse online NG-RC is developed to perform real-time prediction of quality indicators in wastewater treatment processes. Finally, two datasets from actual WWTPs are used to validate the effectiveness of the proposed model.</div></div>\",\"PeriodicalId\":52198,\"journal\":{\"name\":\"Water Research X\",\"volume\":\"25 \",\"pages\":\"Article 100276\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research X\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589914724000665\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000665","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effluent quality soft sensor for wastewater treatment plant with ensemble sparse learning-based online next generation reservoir computing
Real-time monitoring of key quality variables is essential and crucial for stable and safe operations of wastewater treatment plants (WWTPs). Next generation reservoir computing (NG-RC) has recently garnered significant attention in quality prediction, such as COD and BOD, as an effective alternative to traditional reservoir computing (RC), then is able to act as a data-driven soft sensor to twin a hardware sensor for quality variable measurements. Unlike RC, NG-RC does not require random sampling matrices to define the weights of recurrent neural networks and has fewer hyperparameters. However, NG-RC is usually used online but trained offline, thus leading to model degradation under dynamic scenarios. This paper proposes a sparse online NG-RC approach to meet the real-time requirements of WWTPs and mitigate the impact of measurement noise on the model. First, inspired by the Woodbury matrix identity, an incremental strategy is designed, using sequentially arriving data blocks to learn the output weights of NG-RC online. Then, an ensemble sparse strategy is combined to alleviate overfitting issues of the prediction model. Moreover, a soft sensor based on the ensemble sparse online NG-RC is developed to perform real-time prediction of quality indicators in wastewater treatment processes. Finally, two datasets from actual WWTPs are used to validate the effectiveness of the proposed model.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.