Laura Giese , Maiken Baumberger , Marvin Ludwig , Henning Schneidereit , Emilio Sánchez , Bjorn J.M. Robroek , Mariusz Lamentowicz , Jan R.K. Lehmann , Norbert Hölzel , Klaus-Holger Knorr , Hanna Meyer
{"title":"欧洲泥炭地湿度条件的最新趋势","authors":"Laura Giese , Maiken Baumberger , Marvin Ludwig , Henning Schneidereit , Emilio Sánchez , Bjorn J.M. Robroek , Mariusz Lamentowicz , Jan R.K. Lehmann , Norbert Hölzel , Klaus-Holger Knorr , Hanna Meyer","doi":"10.1016/j.rsase.2024.101385","DOIUrl":null,"url":null,"abstract":"<div><div>Peatlands play a key role in climate change mitigation strategies and provide multiple ecosystem services, presuming near natural, waterlogged conditions. However, there is a lack of knowledge on how spatially heterogeneous changes in climate across Europe, such as the predicted increase in drought frequency in Central Europe, might affect these ecosystem services and peatland functioning. While analysis of peat cores and moisture sensors provide high-quality insights into past or present hydrological conditions, this information is usually only available for a limited number of locations. Satellite remote sensing is an effective method to overcome this limitation, providing spatially continuous and temporally highly resolved environmental information.</div><div>This study proposes to use freely available data from the Landsat Mission to analyze trends in proxies of surface moisture of European peatlands over the last four decades. Based on a large random sample of peatland sites across Europe, we performed a pixel-wise trend analysis on monthly time-series dating back to 1984 using the Normalized Difference Water Index as a moisture indicator.</div><div>The satellite-derived moisture changes indicated a pronounced shift towards wetter conditions in the boreal and oceanic region of Europe, whereas in the temperate, continental region, a high proportion of peatlands experienced drying. Small-scale patterns of selected sites revealed a high spatial heterogeneity, the complexity of hydro-ecological interactions, and locally important environmental and anthropogenic drivers affecting the moisture signal. Overall, our results support the expected effects of current climate trends of increasing precipitation in boreal northern and oceanic north-western Europe and increasing frequency of drought in continental Europe.</div><div>Our fully reproducible approach provided new insights on continental and local scales, relevant not only to a better understanding of moisture trends in general, but also to practitioners and stakeholders in ecosystem management. It may thus contribute to developing a cost-effective long-term monitoring strategy for European peatlands.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101385"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent trends in moisture conditions across European peatlands\",\"authors\":\"Laura Giese , Maiken Baumberger , Marvin Ludwig , Henning Schneidereit , Emilio Sánchez , Bjorn J.M. Robroek , Mariusz Lamentowicz , Jan R.K. Lehmann , Norbert Hölzel , Klaus-Holger Knorr , Hanna Meyer\",\"doi\":\"10.1016/j.rsase.2024.101385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Peatlands play a key role in climate change mitigation strategies and provide multiple ecosystem services, presuming near natural, waterlogged conditions. However, there is a lack of knowledge on how spatially heterogeneous changes in climate across Europe, such as the predicted increase in drought frequency in Central Europe, might affect these ecosystem services and peatland functioning. While analysis of peat cores and moisture sensors provide high-quality insights into past or present hydrological conditions, this information is usually only available for a limited number of locations. Satellite remote sensing is an effective method to overcome this limitation, providing spatially continuous and temporally highly resolved environmental information.</div><div>This study proposes to use freely available data from the Landsat Mission to analyze trends in proxies of surface moisture of European peatlands over the last four decades. Based on a large random sample of peatland sites across Europe, we performed a pixel-wise trend analysis on monthly time-series dating back to 1984 using the Normalized Difference Water Index as a moisture indicator.</div><div>The satellite-derived moisture changes indicated a pronounced shift towards wetter conditions in the boreal and oceanic region of Europe, whereas in the temperate, continental region, a high proportion of peatlands experienced drying. Small-scale patterns of selected sites revealed a high spatial heterogeneity, the complexity of hydro-ecological interactions, and locally important environmental and anthropogenic drivers affecting the moisture signal. Overall, our results support the expected effects of current climate trends of increasing precipitation in boreal northern and oceanic north-western Europe and increasing frequency of drought in continental Europe.</div><div>Our fully reproducible approach provided new insights on continental and local scales, relevant not only to a better understanding of moisture trends in general, but also to practitioners and stakeholders in ecosystem management. It may thus contribute to developing a cost-effective long-term monitoring strategy for European peatlands.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101385\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Recent trends in moisture conditions across European peatlands
Peatlands play a key role in climate change mitigation strategies and provide multiple ecosystem services, presuming near natural, waterlogged conditions. However, there is a lack of knowledge on how spatially heterogeneous changes in climate across Europe, such as the predicted increase in drought frequency in Central Europe, might affect these ecosystem services and peatland functioning. While analysis of peat cores and moisture sensors provide high-quality insights into past or present hydrological conditions, this information is usually only available for a limited number of locations. Satellite remote sensing is an effective method to overcome this limitation, providing spatially continuous and temporally highly resolved environmental information.
This study proposes to use freely available data from the Landsat Mission to analyze trends in proxies of surface moisture of European peatlands over the last four decades. Based on a large random sample of peatland sites across Europe, we performed a pixel-wise trend analysis on monthly time-series dating back to 1984 using the Normalized Difference Water Index as a moisture indicator.
The satellite-derived moisture changes indicated a pronounced shift towards wetter conditions in the boreal and oceanic region of Europe, whereas in the temperate, continental region, a high proportion of peatlands experienced drying. Small-scale patterns of selected sites revealed a high spatial heterogeneity, the complexity of hydro-ecological interactions, and locally important environmental and anthropogenic drivers affecting the moisture signal. Overall, our results support the expected effects of current climate trends of increasing precipitation in boreal northern and oceanic north-western Europe and increasing frequency of drought in continental Europe.
Our fully reproducible approach provided new insights on continental and local scales, relevant not only to a better understanding of moisture trends in general, but also to practitioners and stakeholders in ecosystem management. It may thus contribute to developing a cost-effective long-term monitoring strategy for European peatlands.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems