Chandni Hayat , Muhammad Yaseen , Sajjad Ahmad , Khadija Khalid , Mubarak A. Alamri , Asaad Khalid , Syed Qasim Shah , Ovinuchi Ejiohuo , Abdul Wadood , Abdulkadir Yusif Maigoro , Hyung Wook Kwon
{"title":"利用分子对接和 MD 模拟方法阐明高级糖化终产物与 RAGE 的相互作用:糖尿病及其相关并发症的强效疗法的意义","authors":"Chandni Hayat , Muhammad Yaseen , Sajjad Ahmad , Khadija Khalid , Mubarak A. Alamri , Asaad Khalid , Syed Qasim Shah , Ovinuchi Ejiohuo , Abdul Wadood , Abdulkadir Yusif Maigoro , Hyung Wook Kwon","doi":"10.1016/j.molliq.2024.126467","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes mellitus is a global health challenge, ranking third among the mortality rates globally. Diabetic-mediated Advanced glycation end products (AGEs) associated with Receptor for Advanced Glycation End-products (RAGE) contribute to chronic diabetes and its complications, inflammatory, cancer, and neurodegenerative disorders. The information behind the binding mechanisms between AGEs-RAGE complexes remains elusive. In the current study, we used advanced computational approaches to reveal the intramolecular interactions of AGEs-RAGE which leads to multiple diseases. We have characterized AGEs-RAGE interactions by protein–ligand docking and molecular dynamic (MD) simulations were further conducted to evaluate the AGEs-RAGE complex stability. Subsequently, several residues emerged as pivotal in AGEs-RAGE complex formation. Further, MD simulation provides valuable insights into structural movements, stability, and conformational dynamics of protein–ligand complexes. Our findings underscore new insights into molecular mechanisms of AGEs-RAGE complex formation in diabetes and its related complications and the ease of the drug discovery process.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"416 ","pages":"Article 126467"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the interactions of advanced glycation end products with RAGE, employing molecular docking and MD simulation approaches: Implications of potent therapeutic for diabetes and its related complications\",\"authors\":\"Chandni Hayat , Muhammad Yaseen , Sajjad Ahmad , Khadija Khalid , Mubarak A. Alamri , Asaad Khalid , Syed Qasim Shah , Ovinuchi Ejiohuo , Abdul Wadood , Abdulkadir Yusif Maigoro , Hyung Wook Kwon\",\"doi\":\"10.1016/j.molliq.2024.126467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes mellitus is a global health challenge, ranking third among the mortality rates globally. Diabetic-mediated Advanced glycation end products (AGEs) associated with Receptor for Advanced Glycation End-products (RAGE) contribute to chronic diabetes and its complications, inflammatory, cancer, and neurodegenerative disorders. The information behind the binding mechanisms between AGEs-RAGE complexes remains elusive. In the current study, we used advanced computational approaches to reveal the intramolecular interactions of AGEs-RAGE which leads to multiple diseases. We have characterized AGEs-RAGE interactions by protein–ligand docking and molecular dynamic (MD) simulations were further conducted to evaluate the AGEs-RAGE complex stability. Subsequently, several residues emerged as pivotal in AGEs-RAGE complex formation. Further, MD simulation provides valuable insights into structural movements, stability, and conformational dynamics of protein–ligand complexes. Our findings underscore new insights into molecular mechanisms of AGEs-RAGE complex formation in diabetes and its related complications and the ease of the drug discovery process.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"416 \",\"pages\":\"Article 126467\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732224025261\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224025261","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Elucidating the interactions of advanced glycation end products with RAGE, employing molecular docking and MD simulation approaches: Implications of potent therapeutic for diabetes and its related complications
Diabetes mellitus is a global health challenge, ranking third among the mortality rates globally. Diabetic-mediated Advanced glycation end products (AGEs) associated with Receptor for Advanced Glycation End-products (RAGE) contribute to chronic diabetes and its complications, inflammatory, cancer, and neurodegenerative disorders. The information behind the binding mechanisms between AGEs-RAGE complexes remains elusive. In the current study, we used advanced computational approaches to reveal the intramolecular interactions of AGEs-RAGE which leads to multiple diseases. We have characterized AGEs-RAGE interactions by protein–ligand docking and molecular dynamic (MD) simulations were further conducted to evaluate the AGEs-RAGE complex stability. Subsequently, several residues emerged as pivotal in AGEs-RAGE complex formation. Further, MD simulation provides valuable insights into structural movements, stability, and conformational dynamics of protein–ligand complexes. Our findings underscore new insights into molecular mechanisms of AGEs-RAGE complex formation in diabetes and its related complications and the ease of the drug discovery process.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.