Arkadiusz Ryś , Lucas Lima , Joeri Exelmans , Dennis Janssens , Hans Vangheluwe
{"title":"利用基于本体的知识图谱进行模型管理,支持系统工程工作流程","authors":"Arkadiusz Ryś , Lucas Lima , Joeri Exelmans , Dennis Janssens , Hans Vangheluwe","doi":"10.1016/j.jii.2024.100720","DOIUrl":null,"url":null,"abstract":"<div><div>System engineering has been shifting from document-centric to model-based approaches, where assets are becoming more and more digital. Although digitisation conveys several benefits, it also brings several concerns (e.g., storage and access) and opportunities. In the context of Cyber-Physical Systems (CPS), we have experts from various domains executing complex workflows and manipulating models in a plethora of different formalisms, each with their own methods, techniques and tools. Storing knowledge on these workflows can reduce considerable effort during system development not only to allow their repeatability and replicability but also to access and reason on data generated by their execution. In this work, we propose a framework to manage modelling artefacts generated from workflow executions. The basic workflow concepts, related formalisms and artefacts are formally defined in an ontology specified in OML (Ontology Modelling Language). This ontology enables the construction of a knowledge graph that contains system engineering data to which we can apply reasoning. We also developed several tools to support system engineering during the design of workflows, their enactment, and artefact storage, considering versioning, querying and reasoning on the stored data. These tools also hide the complexity of manipulating the knowledge graph directly. Finally, we have applied our proposed framework in a real-world system development scenario of a drivetrain smart sensor system. Results show that our proposal not only helped the system engineer with fundamental difficulties like storage and versioning but also reduced the time needed to access relevant information and new knowledge that can be inferred from the knowledge graph.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100720"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model management to support systems engineering workflows using ontology-based knowledge graphs\",\"authors\":\"Arkadiusz Ryś , Lucas Lima , Joeri Exelmans , Dennis Janssens , Hans Vangheluwe\",\"doi\":\"10.1016/j.jii.2024.100720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>System engineering has been shifting from document-centric to model-based approaches, where assets are becoming more and more digital. Although digitisation conveys several benefits, it also brings several concerns (e.g., storage and access) and opportunities. In the context of Cyber-Physical Systems (CPS), we have experts from various domains executing complex workflows and manipulating models in a plethora of different formalisms, each with their own methods, techniques and tools. Storing knowledge on these workflows can reduce considerable effort during system development not only to allow their repeatability and replicability but also to access and reason on data generated by their execution. In this work, we propose a framework to manage modelling artefacts generated from workflow executions. The basic workflow concepts, related formalisms and artefacts are formally defined in an ontology specified in OML (Ontology Modelling Language). This ontology enables the construction of a knowledge graph that contains system engineering data to which we can apply reasoning. We also developed several tools to support system engineering during the design of workflows, their enactment, and artefact storage, considering versioning, querying and reasoning on the stored data. These tools also hide the complexity of manipulating the knowledge graph directly. Finally, we have applied our proposed framework in a real-world system development scenario of a drivetrain smart sensor system. Results show that our proposal not only helped the system engineer with fundamental difficulties like storage and versioning but also reduced the time needed to access relevant information and new knowledge that can be inferred from the knowledge graph.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"42 \",\"pages\":\"Article 100720\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001638\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001638","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Model management to support systems engineering workflows using ontology-based knowledge graphs
System engineering has been shifting from document-centric to model-based approaches, where assets are becoming more and more digital. Although digitisation conveys several benefits, it also brings several concerns (e.g., storage and access) and opportunities. In the context of Cyber-Physical Systems (CPS), we have experts from various domains executing complex workflows and manipulating models in a plethora of different formalisms, each with their own methods, techniques and tools. Storing knowledge on these workflows can reduce considerable effort during system development not only to allow their repeatability and replicability but also to access and reason on data generated by their execution. In this work, we propose a framework to manage modelling artefacts generated from workflow executions. The basic workflow concepts, related formalisms and artefacts are formally defined in an ontology specified in OML (Ontology Modelling Language). This ontology enables the construction of a knowledge graph that contains system engineering data to which we can apply reasoning. We also developed several tools to support system engineering during the design of workflows, their enactment, and artefact storage, considering versioning, querying and reasoning on the stored data. These tools also hide the complexity of manipulating the knowledge graph directly. Finally, we have applied our proposed framework in a real-world system development scenario of a drivetrain smart sensor system. Results show that our proposal not only helped the system engineer with fundamental difficulties like storage and versioning but also reduced the time needed to access relevant information and new knowledge that can be inferred from the knowledge graph.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.