{"title":"基于太阳能塔和氦气循环的绿色氢气和氨气生产可持续混合系统的设计和热力学分析","authors":"Gamze Soyturk","doi":"10.1016/j.seta.2024.104077","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainable energy-based hybrid energy plants hold significant potential for addressing environmental issues and advancing towards a carbon-free future. This research primarily aims to design and evaluate a solar-powered combined cycle for power, hydrogen (H<sub>2</sub>), and ammonia (NH<sub>3</sub>) production. This innovatively designed multiple generation system composed of a solar tower (ST), a Brayton cycle (BC) with helium (He) as the fluid, a transcritical Rankine cycle (tRC) powered by carbon dioxide (CO<sub>2</sub>), organic Rankine cycle (ORC), thermoelectric generator (TEG), a Proton Exchange Membrane (PEM) electrolysis and a NH<sub>3</sub> reactor. Thermodynamic analyzes are performed to determine the performance of the entire plant and subsystems. The research analysis revealed that the total net power generation capacity is 4938.15 kW and, the net power production of the sub-systems helium BC, tCO<sub>2</sub> RC, ORC and TEG is computed as 4482.03 kW, 100.1 kW, 286.32 kW, and 69.75 kW respectively. Moreover, according to thermodynamic analysis results, H<sub>2</sub> and NH<sub>3</sub> production rates are 1.7 kg/h and 78 kg/h, respectively. The energetic efficiency of the system is 26.71 % and the exergetic efficiency is 26.16 %. The total exergy destruction in the plant is 13811.39 kW. The highest exergy destruction among the system elements is in the solar tower with 85.3 % (11782.66 kW) of the total exergy destruction. Additionally, the levelized energy cost (LEC) for the system is $0.007 $/kWh and the sustainability index (SI) is 1.37325373.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"72 ","pages":"Article 104077"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and thermodynamic analysis of sustainable hybrid system based on solar tower and helium gas cycle for green hydrogen and ammonia production\",\"authors\":\"Gamze Soyturk\",\"doi\":\"10.1016/j.seta.2024.104077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sustainable energy-based hybrid energy plants hold significant potential for addressing environmental issues and advancing towards a carbon-free future. This research primarily aims to design and evaluate a solar-powered combined cycle for power, hydrogen (H<sub>2</sub>), and ammonia (NH<sub>3</sub>) production. This innovatively designed multiple generation system composed of a solar tower (ST), a Brayton cycle (BC) with helium (He) as the fluid, a transcritical Rankine cycle (tRC) powered by carbon dioxide (CO<sub>2</sub>), organic Rankine cycle (ORC), thermoelectric generator (TEG), a Proton Exchange Membrane (PEM) electrolysis and a NH<sub>3</sub> reactor. Thermodynamic analyzes are performed to determine the performance of the entire plant and subsystems. The research analysis revealed that the total net power generation capacity is 4938.15 kW and, the net power production of the sub-systems helium BC, tCO<sub>2</sub> RC, ORC and TEG is computed as 4482.03 kW, 100.1 kW, 286.32 kW, and 69.75 kW respectively. Moreover, according to thermodynamic analysis results, H<sub>2</sub> and NH<sub>3</sub> production rates are 1.7 kg/h and 78 kg/h, respectively. The energetic efficiency of the system is 26.71 % and the exergetic efficiency is 26.16 %. The total exergy destruction in the plant is 13811.39 kW. The highest exergy destruction among the system elements is in the solar tower with 85.3 % (11782.66 kW) of the total exergy destruction. Additionally, the levelized energy cost (LEC) for the system is $0.007 $/kWh and the sustainability index (SI) is 1.37325373.</div></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"72 \",\"pages\":\"Article 104077\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138824004739\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824004739","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Design and thermodynamic analysis of sustainable hybrid system based on solar tower and helium gas cycle for green hydrogen and ammonia production
Sustainable energy-based hybrid energy plants hold significant potential for addressing environmental issues and advancing towards a carbon-free future. This research primarily aims to design and evaluate a solar-powered combined cycle for power, hydrogen (H2), and ammonia (NH3) production. This innovatively designed multiple generation system composed of a solar tower (ST), a Brayton cycle (BC) with helium (He) as the fluid, a transcritical Rankine cycle (tRC) powered by carbon dioxide (CO2), organic Rankine cycle (ORC), thermoelectric generator (TEG), a Proton Exchange Membrane (PEM) electrolysis and a NH3 reactor. Thermodynamic analyzes are performed to determine the performance of the entire plant and subsystems. The research analysis revealed that the total net power generation capacity is 4938.15 kW and, the net power production of the sub-systems helium BC, tCO2 RC, ORC and TEG is computed as 4482.03 kW, 100.1 kW, 286.32 kW, and 69.75 kW respectively. Moreover, according to thermodynamic analysis results, H2 and NH3 production rates are 1.7 kg/h and 78 kg/h, respectively. The energetic efficiency of the system is 26.71 % and the exergetic efficiency is 26.16 %. The total exergy destruction in the plant is 13811.39 kW. The highest exergy destruction among the system elements is in the solar tower with 85.3 % (11782.66 kW) of the total exergy destruction. Additionally, the levelized energy cost (LEC) for the system is $0.007 $/kWh and the sustainability index (SI) is 1.37325373.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.