基于 CFD-DEM 的自走式牧草收割机卸料臂结构优化

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-10-29 DOI:10.1016/j.powtec.2024.120399
Lei Liu, Xiaoyu Li, Yuefeng Du, Guorun Li, Yucong Wang, Du Chen, Zhongxiang Zhu, Zhenghe Song
{"title":"基于 CFD-DEM 的自走式牧草收割机卸料臂结构优化","authors":"Lei Liu,&nbsp;Xiaoyu Li,&nbsp;Yuefeng Du,&nbsp;Guorun Li,&nbsp;Yucong Wang,&nbsp;Du Chen,&nbsp;Zhongxiang Zhu,&nbsp;Zhenghe Song","doi":"10.1016/j.powtec.2024.120399","DOIUrl":null,"url":null,"abstract":"<div><div>To optimize the structure of the discharge arm of the self-propelled harvester and improve the harvesting efficiency to reduce the loss, we first established a mathematical model of the gas-solid two-phase of the forage in the unloading process. Next, we revealed the flow characteristics of forage and the influence of key structures of the discharge arm using the CFD-DEM. Then, we optimized the key structural parameters of the discharge arm using the orthogonal test and response surface method. Finally, we carried out the simulation and field experiment on the forage conveying performance of the discharge arm. The experimental results show that the maximum conveying distance of the new discharge arm is more than 27 m, significantly reducing the spraying loss and improving the harvesting efficiency. Our research findings provide a new reference for optimizing the agricultural material conveying machines and exploring the movement characteristics of agricultural materials in different pipelines.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120399"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure optimization for the discharge arm of the self-propelled forage harvester based on CFD-DEM\",\"authors\":\"Lei Liu,&nbsp;Xiaoyu Li,&nbsp;Yuefeng Du,&nbsp;Guorun Li,&nbsp;Yucong Wang,&nbsp;Du Chen,&nbsp;Zhongxiang Zhu,&nbsp;Zhenghe Song\",\"doi\":\"10.1016/j.powtec.2024.120399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To optimize the structure of the discharge arm of the self-propelled harvester and improve the harvesting efficiency to reduce the loss, we first established a mathematical model of the gas-solid two-phase of the forage in the unloading process. Next, we revealed the flow characteristics of forage and the influence of key structures of the discharge arm using the CFD-DEM. Then, we optimized the key structural parameters of the discharge arm using the orthogonal test and response surface method. Finally, we carried out the simulation and field experiment on the forage conveying performance of the discharge arm. The experimental results show that the maximum conveying distance of the new discharge arm is more than 27 m, significantly reducing the spraying loss and improving the harvesting efficiency. Our research findings provide a new reference for optimizing the agricultural material conveying machines and exploring the movement characteristics of agricultural materials in different pipelines.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120399\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003259102401043X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003259102401043X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了优化自走式收割机卸料臂的结构,提高收割效率,减少损失,我们首先建立了卸料过程中牧草气固两相的数学模型。接着,我们利用 CFD-DEM 揭示了牧草的流动特性以及卸料臂关键结构的影响。然后,我们利用正交试验和响应面法优化了卸料臂的关键结构参数。最后,我们对卸料臂的牧草输送性能进行了模拟和现场实验。实验结果表明,新型卸料臂的最大输送距离大于 27 米,显著降低了喷洒损失,提高了收割效率。我们的研究成果为优化农业物料输送机械、探索农业物料在不同管道中的运动特性提供了新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure optimization for the discharge arm of the self-propelled forage harvester based on CFD-DEM
To optimize the structure of the discharge arm of the self-propelled harvester and improve the harvesting efficiency to reduce the loss, we first established a mathematical model of the gas-solid two-phase of the forage in the unloading process. Next, we revealed the flow characteristics of forage and the influence of key structures of the discharge arm using the CFD-DEM. Then, we optimized the key structural parameters of the discharge arm using the orthogonal test and response surface method. Finally, we carried out the simulation and field experiment on the forage conveying performance of the discharge arm. The experimental results show that the maximum conveying distance of the new discharge arm is more than 27 m, significantly reducing the spraying loss and improving the harvesting efficiency. Our research findings provide a new reference for optimizing the agricultural material conveying machines and exploring the movement characteristics of agricultural materials in different pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Methane dry reforming in a microwave heating-assisted dense fluidized bed Effect of mechanical milling time on powder characteristic, microstructure, and mechanical properties of AA2024/B4C/GNPs hybrid nanocomposites Mass discharge rate of granular flow in eccentric silos with variable side wall friction Characterisation of a continuous blender: Impact of physical properties on mass holdup behaviour Simulating breakage by compression of iron ore pellets using the discrete breakage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1