Jingjing Wang , Liangzhong Yao , Jun Liang , Jun Wang , Fan Cheng
{"title":"基于网络分区的联网微电网分布式优化策略","authors":"Jingjing Wang , Liangzhong Yao , Jun Liang , Jun Wang , Fan Cheng","doi":"10.1016/j.apenergy.2024.124834","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of a large number of distributed resources into an active distribution network presents significant challenges, including high control dimensionality, strong output uncertainty, and low utilization of renewable energy. This paper introduces a distributed optimization strategy for networked microgrids based on network partitioning to alleviate the computational burden, reduce operating costs, and enhance the utilization of renewable energy. The active distribution network is partitioned into networked microgrids, and a two-layer distributed optimization model is developed for their management. The first layer focuses on intra-day distributed optimal dispatch, balancing power and load by managing various flexible resources and the exchange power between virtual microgrids. The second layer, real-time distributed power tracking optimization, coordinates flexible resources within virtual microgrids to mitigate photovoltaic power fluctuations and track intra-day dispatch instructions. Simulation results demonstrate that the proposed network partitioning method reduces dispatch costs by 5.3 % and increases the utilization of distributed PV by 3 %, compared to the NP method that only considering modularity. Moreover, calculation times for intra-day dispatch and real-time power tracking are reduced by approximately 26 % and 50 %, respectively, compared to centralized control.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124834"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed optimization strategy for networked microgrids based on network partitioning\",\"authors\":\"Jingjing Wang , Liangzhong Yao , Jun Liang , Jun Wang , Fan Cheng\",\"doi\":\"10.1016/j.apenergy.2024.124834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of a large number of distributed resources into an active distribution network presents significant challenges, including high control dimensionality, strong output uncertainty, and low utilization of renewable energy. This paper introduces a distributed optimization strategy for networked microgrids based on network partitioning to alleviate the computational burden, reduce operating costs, and enhance the utilization of renewable energy. The active distribution network is partitioned into networked microgrids, and a two-layer distributed optimization model is developed for their management. The first layer focuses on intra-day distributed optimal dispatch, balancing power and load by managing various flexible resources and the exchange power between virtual microgrids. The second layer, real-time distributed power tracking optimization, coordinates flexible resources within virtual microgrids to mitigate photovoltaic power fluctuations and track intra-day dispatch instructions. Simulation results demonstrate that the proposed network partitioning method reduces dispatch costs by 5.3 % and increases the utilization of distributed PV by 3 %, compared to the NP method that only considering modularity. Moreover, calculation times for intra-day dispatch and real-time power tracking are reduced by approximately 26 % and 50 %, respectively, compared to centralized control.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"378 \",\"pages\":\"Article 124834\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924022177\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924022177","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Distributed optimization strategy for networked microgrids based on network partitioning
The integration of a large number of distributed resources into an active distribution network presents significant challenges, including high control dimensionality, strong output uncertainty, and low utilization of renewable energy. This paper introduces a distributed optimization strategy for networked microgrids based on network partitioning to alleviate the computational burden, reduce operating costs, and enhance the utilization of renewable energy. The active distribution network is partitioned into networked microgrids, and a two-layer distributed optimization model is developed for their management. The first layer focuses on intra-day distributed optimal dispatch, balancing power and load by managing various flexible resources and the exchange power between virtual microgrids. The second layer, real-time distributed power tracking optimization, coordinates flexible resources within virtual microgrids to mitigate photovoltaic power fluctuations and track intra-day dispatch instructions. Simulation results demonstrate that the proposed network partitioning method reduces dispatch costs by 5.3 % and increases the utilization of distributed PV by 3 %, compared to the NP method that only considering modularity. Moreover, calculation times for intra-day dispatch and real-time power tracking are reduced by approximately 26 % and 50 %, respectively, compared to centralized control.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.