用于混沌时间序列预测的跳变长度多模块回声状态网络

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2024-11-09 DOI:10.1016/j.asoc.2024.112441
Qianwen Liu, Fanjun Li, Shoujing Zheng, Xingshang Li
{"title":"用于混沌时间序列预测的跳变长度多模块回声状态网络","authors":"Qianwen Liu,&nbsp;Fanjun Li,&nbsp;Shoujing Zheng,&nbsp;Xingshang Li","doi":"10.1016/j.asoc.2024.112441","DOIUrl":null,"url":null,"abstract":"<div><div>Echo state networks (ESNs) have been extensively applied in time series prediction problems. However, the memory-nonlinearity trade-off problem severely limits the ability of ESNs to deal with chaotic time series prediction problems. In this study, a multi-module echo state network with variable skip length (MESN-VSL) is proposed to address this problem. First, the reservoir is divided into a nonlinear mapping module and multiple linear memory modules based on the idea of memory and nonlinearity separation. This idea can effectively balance the memory-nonlinearity trade-off problems. Second, a multi-module mechanism with skip length is put forward to model the characteristics of chaotic time series. The skip length and the number of linear memory modules of the MESN-VSL model are automatically determined based on the idea of phase-space reconstruction. Finally, the experimental results further demonstrate that the MESN-VSL model is superior to some existing models in chaotic time series prediction.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112441"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-module echo state network with variable skip length for chaotic time series prediction\",\"authors\":\"Qianwen Liu,&nbsp;Fanjun Li,&nbsp;Shoujing Zheng,&nbsp;Xingshang Li\",\"doi\":\"10.1016/j.asoc.2024.112441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Echo state networks (ESNs) have been extensively applied in time series prediction problems. However, the memory-nonlinearity trade-off problem severely limits the ability of ESNs to deal with chaotic time series prediction problems. In this study, a multi-module echo state network with variable skip length (MESN-VSL) is proposed to address this problem. First, the reservoir is divided into a nonlinear mapping module and multiple linear memory modules based on the idea of memory and nonlinearity separation. This idea can effectively balance the memory-nonlinearity trade-off problems. Second, a multi-module mechanism with skip length is put forward to model the characteristics of chaotic time series. The skip length and the number of linear memory modules of the MESN-VSL model are automatically determined based on the idea of phase-space reconstruction. Finally, the experimental results further demonstrate that the MESN-VSL model is superior to some existing models in chaotic time series prediction.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"167 \",\"pages\":\"Article 112441\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624012158\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624012158","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

回声状态网络(ESN)已被广泛应用于时间序列预测问题。然而,记忆-非线性权衡问题严重限制了 ESN 处理混沌时间序列预测问题的能力。本研究提出了一种具有可变跳越长度的多模块回波状态网络(MESN-VSL)来解决这一问题。首先,根据内存和非线性分离的思想,将水库分为一个非线性映射模块和多个线性内存模块。这种思想能有效平衡内存与非线性的权衡问题。其次,针对混沌时间序列的特点,提出了带跳转长度的多模块机制。MESN-VSL 模型的跳变长度和线性内存模块数量是基于相空间重构思想自动确定的。最后,实验结果进一步证明了 MESN-VSL 模型在混沌时间序列预测方面优于现有的一些模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-module echo state network with variable skip length for chaotic time series prediction
Echo state networks (ESNs) have been extensively applied in time series prediction problems. However, the memory-nonlinearity trade-off problem severely limits the ability of ESNs to deal with chaotic time series prediction problems. In this study, a multi-module echo state network with variable skip length (MESN-VSL) is proposed to address this problem. First, the reservoir is divided into a nonlinear mapping module and multiple linear memory modules based on the idea of memory and nonlinearity separation. This idea can effectively balance the memory-nonlinearity trade-off problems. Second, a multi-module mechanism with skip length is put forward to model the characteristics of chaotic time series. The skip length and the number of linear memory modules of the MESN-VSL model are automatically determined based on the idea of phase-space reconstruction. Finally, the experimental results further demonstrate that the MESN-VSL model is superior to some existing models in chaotic time series prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
A multi-strategy fruit fly optimization algorithm for the distributed permutation flowshop scheduling problem with sequence-dependent setup times A sparse diverse-branch large kernel convolutional neural network for human activity recognition using wearables A reinforcement learning hyper-heuristic algorithm for the distributed flowshops scheduling problem under consideration of emergency order insertion Differential evolution with multi-strategies for UAV trajectory planning and point cloud registration Shapelet selection for time series classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1