Junjie Wei , Fan Wang , Xinyue Zheng , Yuxin Wang , Jinpeng Wang , Yu Liu , Junjie Du , Xin Zheng , Sai Wu , Yajun Pang , Zhehong Shen , Hao Chen
{"title":"熔盐活化与原位表面石墨化相结合,为锌-离子混合超级电容器开发具有高体积比容量的木质自支撑碳电极","authors":"Junjie Wei , Fan Wang , Xinyue Zheng , Yuxin Wang , Jinpeng Wang , Yu Liu , Junjie Du , Xin Zheng , Sai Wu , Yajun Pang , Zhehong Shen , Hao Chen","doi":"10.1016/j.indcrop.2024.120047","DOIUrl":null,"url":null,"abstract":"<div><div>Despite significant advancements in enhancing the gravimetric and areal specific capacities of carbon electrodes for zinc-ion hybrid supercapacitors (ZHSCs), the attainment of a high volumetric specific capacity remains a pivotal challenge. This research suggests an innovative method to boost the volumetric specific capacity of carbon electrodes by constructing self-supporting carbon electrodes derived from wood. The process involves a synergistic application of molten salt activation and in-situ surface graphitization. Specifically, pine wood (<em>Pinus sylvestris</em> var. <em>mongolica</em> Litv.) undergoes initial carbonization, followed by treatment with a molten salt electrolyte, generating a carbon material distinguished by a penetrating channel structure, a rich micro-mesoporous network, and distinct characteristics such as self-support and surface graphitization. These qualities contribute to a significant increase in the volumetric specific capacity of the resultant carbon electrode, achieving up to 26.3 mAh cm<sup>–3</sup> at 2 mA cm<sup>–2</sup>, surpassing commercial activated carbon and analogous materials in ZHSC applications. Additionally, a coin-cell ZHSC utilizing this innovative carbon electrode demonstrates exceptional performance, reaching up to 5.6 mAh or 12.6 F per individual ZHSC, equivalent to 12.5 F cm<sup>–3</sup> by volume. This performance not only outperforms commercial coin-cell supercapacitors but also aligns closely with the performance metrics of certain commercial coin-cell aqueous batteries. This approach provides a viable solution for augmenting the volumetric specific capacity of carbon electrodes in ZHSCs.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120047"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molten salt activation combined with in-situ surface graphitization towards wood-derived self-supporting carbon electrodes with high volumetric specific capacity for zinc-ion hybrid supercapacitors\",\"authors\":\"Junjie Wei , Fan Wang , Xinyue Zheng , Yuxin Wang , Jinpeng Wang , Yu Liu , Junjie Du , Xin Zheng , Sai Wu , Yajun Pang , Zhehong Shen , Hao Chen\",\"doi\":\"10.1016/j.indcrop.2024.120047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite significant advancements in enhancing the gravimetric and areal specific capacities of carbon electrodes for zinc-ion hybrid supercapacitors (ZHSCs), the attainment of a high volumetric specific capacity remains a pivotal challenge. This research suggests an innovative method to boost the volumetric specific capacity of carbon electrodes by constructing self-supporting carbon electrodes derived from wood. The process involves a synergistic application of molten salt activation and in-situ surface graphitization. Specifically, pine wood (<em>Pinus sylvestris</em> var. <em>mongolica</em> Litv.) undergoes initial carbonization, followed by treatment with a molten salt electrolyte, generating a carbon material distinguished by a penetrating channel structure, a rich micro-mesoporous network, and distinct characteristics such as self-support and surface graphitization. These qualities contribute to a significant increase in the volumetric specific capacity of the resultant carbon electrode, achieving up to 26.3 mAh cm<sup>–3</sup> at 2 mA cm<sup>–2</sup>, surpassing commercial activated carbon and analogous materials in ZHSC applications. Additionally, a coin-cell ZHSC utilizing this innovative carbon electrode demonstrates exceptional performance, reaching up to 5.6 mAh or 12.6 F per individual ZHSC, equivalent to 12.5 F cm<sup>–3</sup> by volume. This performance not only outperforms commercial coin-cell supercapacitors but also aligns closely with the performance metrics of certain commercial coin-cell aqueous batteries. This approach provides a viable solution for augmenting the volumetric specific capacity of carbon electrodes in ZHSCs.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"222 \",\"pages\":\"Article 120047\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024020247\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024020247","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
尽管在提高锌离子混合超级电容器(ZHSCs)碳电极的重量比容量和面积比容量方面取得了重大进展,但实现高体积比容量仍是一项关键挑战。本研究提出了一种创新方法,通过构建木材自支撑碳电极来提高碳电极的体积比容量。这一过程涉及熔盐活化和原位表面石墨化的协同应用。具体来说,松木(Pinus sylvestris var. mongolica Litv.)经过初始碳化,然后用熔盐电解液处理,生成的碳材料具有穿透性通道结构、丰富的微多孔网络以及自支撑和表面石墨化等显著特征。这些特性显著提高了碳电极的体积比容量,在 2 mA cm-2 时可达到 26.3 mAh cm-3,超过了商用活性炭和 ZHSC 应用中的类似材料。此外,使用这种创新型碳电极的纽扣电池 ZHSC 也表现出卓越的性能,每个 ZHSC 可达到 5.6 mAh 或 12.6 F,按体积计算相当于 12.5 F cm-3。这一性能不仅优于商用纽扣电池超级电容器,而且与某些商用纽扣电池水电池的性能指标非常接近。这种方法为提高 ZHSC 中碳电极的体积比容量提供了可行的解决方案。
Molten salt activation combined with in-situ surface graphitization towards wood-derived self-supporting carbon electrodes with high volumetric specific capacity for zinc-ion hybrid supercapacitors
Despite significant advancements in enhancing the gravimetric and areal specific capacities of carbon electrodes for zinc-ion hybrid supercapacitors (ZHSCs), the attainment of a high volumetric specific capacity remains a pivotal challenge. This research suggests an innovative method to boost the volumetric specific capacity of carbon electrodes by constructing self-supporting carbon electrodes derived from wood. The process involves a synergistic application of molten salt activation and in-situ surface graphitization. Specifically, pine wood (Pinus sylvestris var. mongolica Litv.) undergoes initial carbonization, followed by treatment with a molten salt electrolyte, generating a carbon material distinguished by a penetrating channel structure, a rich micro-mesoporous network, and distinct characteristics such as self-support and surface graphitization. These qualities contribute to a significant increase in the volumetric specific capacity of the resultant carbon electrode, achieving up to 26.3 mAh cm–3 at 2 mA cm–2, surpassing commercial activated carbon and analogous materials in ZHSC applications. Additionally, a coin-cell ZHSC utilizing this innovative carbon electrode demonstrates exceptional performance, reaching up to 5.6 mAh or 12.6 F per individual ZHSC, equivalent to 12.5 F cm–3 by volume. This performance not only outperforms commercial coin-cell supercapacitors but also aligns closely with the performance metrics of certain commercial coin-cell aqueous batteries. This approach provides a viable solution for augmenting the volumetric specific capacity of carbon electrodes in ZHSCs.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.