Guozhang Zhang , Shengwei Fu , Ke Li , Haisong Huang
{"title":"用于无人机轨迹规划和点云注册的多策略差分进化论","authors":"Guozhang Zhang , Shengwei Fu , Ke Li , Haisong Huang","doi":"10.1016/j.asoc.2024.112466","DOIUrl":null,"url":null,"abstract":"<div><div>The present study introduces a novel adaptive algorithm, MELSHADE-cnEpSin, which aims to enhance the performance of LSHADE-cnEpSin, which is not only stands out as one of the most competitive versions of differential evolution but also holds the distinction of being one of the CEC winner algorithms. Compared to the original methodology, three main distinctions are presented. To begin with, we adopt an adaptive selection mechanism (ASM) of crossover rate Cr value based on the external archive to rechoose a suitable value. In the next place, a nonlinear population reduction strategy using Sigmoid function is employed to improve population distribution. Additionally, a restart strategy is implemented to mitigate the risk of algorithmic convergence towards suboptimal solutions. Furthermore, the performance of MELSHADE-cnEpSin was evaluated using standard CEC2017 and CEC2022 test suites in conjunction with nine CEC-winning algorithms (L-SHADE, EBOwithCMAR, AGSK, LSHADE-SPACMA, LSHADE-cnEpSin, ELSHADE-SPACMA, EA4eig, MadDE and APGSK-IMODE) as well as two novel algorithms (ACD-DE and MIDE). Furthermore, MELSHADE-cnEpSin was effectively employed to address the challenge of UAV trajectory planning in intricate mountainous terrain and underwent simulation with point cloud registration cases utilizing a rapid global registration dataset, thereby showcasing the potential of MELSHADE-cnEpSin in tackling real-world optimization problems.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112466"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential evolution with multi-strategies for UAV trajectory planning and point cloud registration\",\"authors\":\"Guozhang Zhang , Shengwei Fu , Ke Li , Haisong Huang\",\"doi\":\"10.1016/j.asoc.2024.112466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study introduces a novel adaptive algorithm, MELSHADE-cnEpSin, which aims to enhance the performance of LSHADE-cnEpSin, which is not only stands out as one of the most competitive versions of differential evolution but also holds the distinction of being one of the CEC winner algorithms. Compared to the original methodology, three main distinctions are presented. To begin with, we adopt an adaptive selection mechanism (ASM) of crossover rate Cr value based on the external archive to rechoose a suitable value. In the next place, a nonlinear population reduction strategy using Sigmoid function is employed to improve population distribution. Additionally, a restart strategy is implemented to mitigate the risk of algorithmic convergence towards suboptimal solutions. Furthermore, the performance of MELSHADE-cnEpSin was evaluated using standard CEC2017 and CEC2022 test suites in conjunction with nine CEC-winning algorithms (L-SHADE, EBOwithCMAR, AGSK, LSHADE-SPACMA, LSHADE-cnEpSin, ELSHADE-SPACMA, EA4eig, MadDE and APGSK-IMODE) as well as two novel algorithms (ACD-DE and MIDE). Furthermore, MELSHADE-cnEpSin was effectively employed to address the challenge of UAV trajectory planning in intricate mountainous terrain and underwent simulation with point cloud registration cases utilizing a rapid global registration dataset, thereby showcasing the potential of MELSHADE-cnEpSin in tackling real-world optimization problems.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"167 \",\"pages\":\"Article 112466\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624012407\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624012407","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Differential evolution with multi-strategies for UAV trajectory planning and point cloud registration
The present study introduces a novel adaptive algorithm, MELSHADE-cnEpSin, which aims to enhance the performance of LSHADE-cnEpSin, which is not only stands out as one of the most competitive versions of differential evolution but also holds the distinction of being one of the CEC winner algorithms. Compared to the original methodology, three main distinctions are presented. To begin with, we adopt an adaptive selection mechanism (ASM) of crossover rate Cr value based on the external archive to rechoose a suitable value. In the next place, a nonlinear population reduction strategy using Sigmoid function is employed to improve population distribution. Additionally, a restart strategy is implemented to mitigate the risk of algorithmic convergence towards suboptimal solutions. Furthermore, the performance of MELSHADE-cnEpSin was evaluated using standard CEC2017 and CEC2022 test suites in conjunction with nine CEC-winning algorithms (L-SHADE, EBOwithCMAR, AGSK, LSHADE-SPACMA, LSHADE-cnEpSin, ELSHADE-SPACMA, EA4eig, MadDE and APGSK-IMODE) as well as two novel algorithms (ACD-DE and MIDE). Furthermore, MELSHADE-cnEpSin was effectively employed to address the challenge of UAV trajectory planning in intricate mountainous terrain and underwent simulation with point cloud registration cases utilizing a rapid global registration dataset, thereby showcasing the potential of MELSHADE-cnEpSin in tackling real-world optimization problems.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.