Hongxu Zhu , Wei Wang , Xiaoliang Wang , Shufan Wu , Ran Sun
{"title":"具有状态和控制相关噪声的随机线性系统的在线 Q-learning","authors":"Hongxu Zhu , Wei Wang , Xiaoliang Wang , Shufan Wu , Ran Sun","doi":"10.1016/j.asoc.2024.112417","DOIUrl":null,"url":null,"abstract":"<div><div>For continuous-time (CT) systems that are characterized by stochastic differential equations (SDEs) with completely unknown dynamics parameters, a reinforcement learning (RL)-based optimal control framework is presented in this paper. To obtain the near-optimal control policy, an online Q-learning algorithm is proposed by learning the data sampled from the system state trajectory, while an integral reinforcement learning (IRL) approach is developed in stochastic situation so as to formulate the Q-learning iterative algorithm. In particular, an actor/critic neural network (NN) structure is applied in iteration, where a critic approximator is used for estimating the designed Q-function while an actor approximator is for estimating the optimal control policy online. To ensure the convergence of iteration, the tuning laws of two neural networks are designed, respectively, by a gradient descent scheme. Moreover, the mean-square stability of the closed-loop system is proved through rigorous analysis, and the convergence to optimal solution is guaranteed as well.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112417"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Q-learning for stochastic linear systems with state and control dependent noise\",\"authors\":\"Hongxu Zhu , Wei Wang , Xiaoliang Wang , Shufan Wu , Ran Sun\",\"doi\":\"10.1016/j.asoc.2024.112417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For continuous-time (CT) systems that are characterized by stochastic differential equations (SDEs) with completely unknown dynamics parameters, a reinforcement learning (RL)-based optimal control framework is presented in this paper. To obtain the near-optimal control policy, an online Q-learning algorithm is proposed by learning the data sampled from the system state trajectory, while an integral reinforcement learning (IRL) approach is developed in stochastic situation so as to formulate the Q-learning iterative algorithm. In particular, an actor/critic neural network (NN) structure is applied in iteration, where a critic approximator is used for estimating the designed Q-function while an actor approximator is for estimating the optimal control policy online. To ensure the convergence of iteration, the tuning laws of two neural networks are designed, respectively, by a gradient descent scheme. Moreover, the mean-square stability of the closed-loop system is proved through rigorous analysis, and the convergence to optimal solution is guaranteed as well.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"167 \",\"pages\":\"Article 112417\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624011918\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624011918","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Online Q-learning for stochastic linear systems with state and control dependent noise
For continuous-time (CT) systems that are characterized by stochastic differential equations (SDEs) with completely unknown dynamics parameters, a reinforcement learning (RL)-based optimal control framework is presented in this paper. To obtain the near-optimal control policy, an online Q-learning algorithm is proposed by learning the data sampled from the system state trajectory, while an integral reinforcement learning (IRL) approach is developed in stochastic situation so as to formulate the Q-learning iterative algorithm. In particular, an actor/critic neural network (NN) structure is applied in iteration, where a critic approximator is used for estimating the designed Q-function while an actor approximator is for estimating the optimal control policy online. To ensure the convergence of iteration, the tuning laws of two neural networks are designed, respectively, by a gradient descent scheme. Moreover, the mean-square stability of the closed-loop system is proved through rigorous analysis, and the convergence to optimal solution is guaranteed as well.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.