使用开源方法简化屋顶太阳能光伏装置的结构工程合规性

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-11-13 DOI:10.1016/j.solener.2024.113074
Nicholas Vandewetering , Joshua M. Pearce
{"title":"使用开源方法简化屋顶太阳能光伏装置的结构工程合规性","authors":"Nicholas Vandewetering ,&nbsp;Joshua M. Pearce","doi":"10.1016/j.solener.2024.113074","DOIUrl":null,"url":null,"abstract":"<div><div>Although solar photovoltaic (PV) systems provide the lowest cost electricity, regulations often slow PV penetration velocity. A current hurdle to distributed generation with PV is building code compliance. For example, installing solar PV modules on rooftops in some areas requires both interpretation and approval from a professional engineer. This engineering process comes with costs, which can be a substantial fraction of the capital costs of small-scale systems for smaller or efficient houses, as well as for less-wealthy families that want to build up systems one module at a time. Improving the permitting and inspection process can thus significantly reduce the soft costs of distributed PV systems. This study provides a method of overcoming these challenges for rooftop solar PV by introducing an open-source tool to streamline the process while maintaining compliance with necessary local building codes. The results of economic analysis on this method show costs of average 5 kW rooftop PV systems can be cut by 5–25 % in the U.S. Thus, accessibility and affordability of rooftop PV systems are significantly improved because of the elimination of redundant engineering. Implementing such open-source tools is a low-cost effective area of future energy policies to facilitate more economically inclusive and widespread PV adoption.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113074"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamlining structural engineering compliance of rooftop solar photovoltaic installations using an open-source approach\",\"authors\":\"Nicholas Vandewetering ,&nbsp;Joshua M. Pearce\",\"doi\":\"10.1016/j.solener.2024.113074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although solar photovoltaic (PV) systems provide the lowest cost electricity, regulations often slow PV penetration velocity. A current hurdle to distributed generation with PV is building code compliance. For example, installing solar PV modules on rooftops in some areas requires both interpretation and approval from a professional engineer. This engineering process comes with costs, which can be a substantial fraction of the capital costs of small-scale systems for smaller or efficient houses, as well as for less-wealthy families that want to build up systems one module at a time. Improving the permitting and inspection process can thus significantly reduce the soft costs of distributed PV systems. This study provides a method of overcoming these challenges for rooftop solar PV by introducing an open-source tool to streamline the process while maintaining compliance with necessary local building codes. The results of economic analysis on this method show costs of average 5 kW rooftop PV systems can be cut by 5–25 % in the U.S. Thus, accessibility and affordability of rooftop PV systems are significantly improved because of the elimination of redundant engineering. Implementing such open-source tools is a low-cost effective area of future energy policies to facilitate more economically inclusive and widespread PV adoption.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"284 \",\"pages\":\"Article 113074\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24007692\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007692","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

尽管太阳能光伏(PV)系统提供的电力成本最低,但相关法规往往会减缓光伏发电的普及速度。目前,光伏分布式发电的一个障碍是建筑法规的合规性。例如,在某些地区的屋顶上安装太阳能光伏组件需要专业工程师的解释和批准。这一工程程序需要成本,这可能是小型或高效房屋的小型系统资本成本的一大部分,也可能是那些希望一个模块一个模块地建立系统的不太富裕家庭的资本成本的一大部分。因此,改进许可和检查流程可以显著降低分布式光伏系统的软成本。本研究为屋顶太阳能光伏发电提供了一种克服这些挑战的方法,即引入一种开源工具来简化流程,同时保持符合必要的地方建筑法规。该方法的经济分析结果表明,在美国,平均 5 千瓦屋顶光伏系统的成本可降低 5-25%。实施此类开源工具是未来能源政策的一个低成本有效领域,可促进光伏技术在经济上的包容性和普及性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Streamlining structural engineering compliance of rooftop solar photovoltaic installations using an open-source approach
Although solar photovoltaic (PV) systems provide the lowest cost electricity, regulations often slow PV penetration velocity. A current hurdle to distributed generation with PV is building code compliance. For example, installing solar PV modules on rooftops in some areas requires both interpretation and approval from a professional engineer. This engineering process comes with costs, which can be a substantial fraction of the capital costs of small-scale systems for smaller or efficient houses, as well as for less-wealthy families that want to build up systems one module at a time. Improving the permitting and inspection process can thus significantly reduce the soft costs of distributed PV systems. This study provides a method of overcoming these challenges for rooftop solar PV by introducing an open-source tool to streamline the process while maintaining compliance with necessary local building codes. The results of economic analysis on this method show costs of average 5 kW rooftop PV systems can be cut by 5–25 % in the U.S. Thus, accessibility and affordability of rooftop PV systems are significantly improved because of the elimination of redundant engineering. Implementing such open-source tools is a low-cost effective area of future energy policies to facilitate more economically inclusive and widespread PV adoption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Corrigendum to “Experimental investigation of a photovoltaic solar air conditioning system and comparison with conventional unit in the context of the state of Piaui, Brazil” [Sol. Energy 272 (2024) 112492] Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: Development of an off-grid prototype Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1