Adriana-Petronela Chiriac , Catalin-Paul Constantin , Mihai Asandulesa , Violeta Melinte , Andrzej Jankowski , Mariana-Dana Damaceanu
{"title":"通过与含氟聚酰亚胺混合,将三苯甲基取代的三苯胺基聚酰亚胺重新用于气体分离膜","authors":"Adriana-Petronela Chiriac , Catalin-Paul Constantin , Mihai Asandulesa , Violeta Melinte , Andrzej Jankowski , Mariana-Dana Damaceanu","doi":"10.1016/j.reactfunctpolym.2024.106081","DOIUrl":null,"url":null,"abstract":"<div><div>In the attempt to develop gas separation membranes by reusing polymers with no film-forming ability but with great potential for this purpose, blending has been approached as a simple, time- and cost-effective strategy. Herein, blends of trityl-substituted triphenylamine (TTA)-based polyimides and a fluorinated polyimide (6F-PI) were involved to prepare dense membranes by drop-casting technique. The two blend components involved in variable amounts led to different film morphologies with a strong impact on most blends' properties and gas separation performance. According to optical microscopy, SEM, AFM, and FTIR investigations, the blend series containing hexafluoroisopropylidene (6F) groups in both polyimide components proved to be fully miscible at the molecular levels. When a single 6F-based component was integrated into the blend, the polymers proved to be compatible, but only partially miscible, with a two-phase structure, in which 6F-PI wrapped around the TTA-PI growth fibrillar domains. However, all blends displayed a single glass transition and FTIR bands which do not sum the ones of the polymer components, as well as a high thermal stability, close to that of 6F-PI. Regardless of their miscibility level, all blends behaved as classical polyimide films, with good mechanical properties and chemical resistance to corrosive media like acid vapors or basic solutions. The blend composition and diimide structure of TTA-PI little affected the dielectric behavior, unlike the gas separation performance that strongly depended on these characteristics. The higher amount of 6F groups in the miscible blends endowed the membranes with superior permeability and selectivity, allowing in some cases to surpass the trade-off rule. Generally, the gas permeability decreased with the increase of TTA-PI content, with some exceptions. The low intermolecular interfacial interactions promoted by TTA-PI were found to be beneficial in preserving a good selectivity of gas molecules with a small kinetic diameter (He, CO<sub>2</sub>) though their permeability is lost. The gas permeability changes as a function of the blend composition and structure were mostly due to changes in the solubility coefficient and less from gas diffusion capability, at least for CO<sub>2</sub> and N<sub>2</sub>.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"205 ","pages":"Article 106081"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repurposing trityl-substituted triphenylamine-based polyimides for gas separation membranes by blending with a fluorinated polyimide\",\"authors\":\"Adriana-Petronela Chiriac , Catalin-Paul Constantin , Mihai Asandulesa , Violeta Melinte , Andrzej Jankowski , Mariana-Dana Damaceanu\",\"doi\":\"10.1016/j.reactfunctpolym.2024.106081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the attempt to develop gas separation membranes by reusing polymers with no film-forming ability but with great potential for this purpose, blending has been approached as a simple, time- and cost-effective strategy. Herein, blends of trityl-substituted triphenylamine (TTA)-based polyimides and a fluorinated polyimide (6F-PI) were involved to prepare dense membranes by drop-casting technique. The two blend components involved in variable amounts led to different film morphologies with a strong impact on most blends' properties and gas separation performance. According to optical microscopy, SEM, AFM, and FTIR investigations, the blend series containing hexafluoroisopropylidene (6F) groups in both polyimide components proved to be fully miscible at the molecular levels. When a single 6F-based component was integrated into the blend, the polymers proved to be compatible, but only partially miscible, with a two-phase structure, in which 6F-PI wrapped around the TTA-PI growth fibrillar domains. However, all blends displayed a single glass transition and FTIR bands which do not sum the ones of the polymer components, as well as a high thermal stability, close to that of 6F-PI. Regardless of their miscibility level, all blends behaved as classical polyimide films, with good mechanical properties and chemical resistance to corrosive media like acid vapors or basic solutions. The blend composition and diimide structure of TTA-PI little affected the dielectric behavior, unlike the gas separation performance that strongly depended on these characteristics. The higher amount of 6F groups in the miscible blends endowed the membranes with superior permeability and selectivity, allowing in some cases to surpass the trade-off rule. Generally, the gas permeability decreased with the increase of TTA-PI content, with some exceptions. The low intermolecular interfacial interactions promoted by TTA-PI were found to be beneficial in preserving a good selectivity of gas molecules with a small kinetic diameter (He, CO<sub>2</sub>) though their permeability is lost. The gas permeability changes as a function of the blend composition and structure were mostly due to changes in the solubility coefficient and less from gas diffusion capability, at least for CO<sub>2</sub> and N<sub>2</sub>.</div></div>\",\"PeriodicalId\":20916,\"journal\":{\"name\":\"Reactive & Functional Polymers\",\"volume\":\"205 \",\"pages\":\"Article 106081\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive & Functional Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381514824002566\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002566","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Repurposing trityl-substituted triphenylamine-based polyimides for gas separation membranes by blending with a fluorinated polyimide
In the attempt to develop gas separation membranes by reusing polymers with no film-forming ability but with great potential for this purpose, blending has been approached as a simple, time- and cost-effective strategy. Herein, blends of trityl-substituted triphenylamine (TTA)-based polyimides and a fluorinated polyimide (6F-PI) were involved to prepare dense membranes by drop-casting technique. The two blend components involved in variable amounts led to different film morphologies with a strong impact on most blends' properties and gas separation performance. According to optical microscopy, SEM, AFM, and FTIR investigations, the blend series containing hexafluoroisopropylidene (6F) groups in both polyimide components proved to be fully miscible at the molecular levels. When a single 6F-based component was integrated into the blend, the polymers proved to be compatible, but only partially miscible, with a two-phase structure, in which 6F-PI wrapped around the TTA-PI growth fibrillar domains. However, all blends displayed a single glass transition and FTIR bands which do not sum the ones of the polymer components, as well as a high thermal stability, close to that of 6F-PI. Regardless of their miscibility level, all blends behaved as classical polyimide films, with good mechanical properties and chemical resistance to corrosive media like acid vapors or basic solutions. The blend composition and diimide structure of TTA-PI little affected the dielectric behavior, unlike the gas separation performance that strongly depended on these characteristics. The higher amount of 6F groups in the miscible blends endowed the membranes with superior permeability and selectivity, allowing in some cases to surpass the trade-off rule. Generally, the gas permeability decreased with the increase of TTA-PI content, with some exceptions. The low intermolecular interfacial interactions promoted by TTA-PI were found to be beneficial in preserving a good selectivity of gas molecules with a small kinetic diameter (He, CO2) though their permeability is lost. The gas permeability changes as a function of the blend composition and structure were mostly due to changes in the solubility coefficient and less from gas diffusion capability, at least for CO2 and N2.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.