{"title":"日本木屋和人工林木材与碳储量的关联动态模型","authors":"Naho Yamashita , Tomer Fishman , Chihiro Kayo , Hiroki Tanikawa","doi":"10.1016/j.spc.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon absorption in growing trees is an important element of a carbon-neutral society, and the long-term storage of carbon stocks is a crucial sustainability challenge. Previous studies have focused on either live-biomass carbon stocks in plantation forests or anthropogenic carbon stocks in man-made objects. For a comprehensive nature-based climate solution, an analytical framework, dataset, and scenario setup for modeling the interrelationship between timber supply and demand are required. This study developed an interlinked material flow analysis model in which the timber demand for wooden houses is connected with timber supply from managed plantation forestry. We demonstrate the model by quantifying both live-biomass and anthropogenic carbon stocks and their potentials in Japan. We compared multiple scenario-runs of the model for wooden house demands estimated by population change with varying combinations of house types, structures, and lifespans. Our results show that carbon stocks will reach a maximum amount of 1.1 billion t-C by 2050 in a scenario of high demand for wooden detached houses with lifespan extensions. On the other hand, we also found that the aging of plantation forests and their reduced carbon-stocking capacities appear inevitable in any scenario owing to the limited demand for timber. Notably, despite the widely different settings of the various scenarios, our results exhibited narrow variances in future potential carbon storage in Japan. This can be explained by the unique population characteristics and building demographics of Japan. These counterintuitive findings highlight the need for interrelated modeling of the forestry and construction sectors. Our model and its scope are versatile and applicable to other case study areas, estimation periods, and target materials.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"52 ","pages":"Pages 314-323"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interlinked dynamic model of timber and carbon stocks in Japan's wooden houses and plantation forests\",\"authors\":\"Naho Yamashita , Tomer Fishman , Chihiro Kayo , Hiroki Tanikawa\",\"doi\":\"10.1016/j.spc.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon absorption in growing trees is an important element of a carbon-neutral society, and the long-term storage of carbon stocks is a crucial sustainability challenge. Previous studies have focused on either live-biomass carbon stocks in plantation forests or anthropogenic carbon stocks in man-made objects. For a comprehensive nature-based climate solution, an analytical framework, dataset, and scenario setup for modeling the interrelationship between timber supply and demand are required. This study developed an interlinked material flow analysis model in which the timber demand for wooden houses is connected with timber supply from managed plantation forestry. We demonstrate the model by quantifying both live-biomass and anthropogenic carbon stocks and their potentials in Japan. We compared multiple scenario-runs of the model for wooden house demands estimated by population change with varying combinations of house types, structures, and lifespans. Our results show that carbon stocks will reach a maximum amount of 1.1 billion t-C by 2050 in a scenario of high demand for wooden detached houses with lifespan extensions. On the other hand, we also found that the aging of plantation forests and their reduced carbon-stocking capacities appear inevitable in any scenario owing to the limited demand for timber. Notably, despite the widely different settings of the various scenarios, our results exhibited narrow variances in future potential carbon storage in Japan. This can be explained by the unique population characteristics and building demographics of Japan. These counterintuitive findings highlight the need for interrelated modeling of the forestry and construction sectors. Our model and its scope are versatile and applicable to other case study areas, estimation periods, and target materials.</div></div>\",\"PeriodicalId\":48619,\"journal\":{\"name\":\"Sustainable Production and Consumption\",\"volume\":\"52 \",\"pages\":\"Pages 314-323\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Production and Consumption\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352550924003154\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924003154","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
An interlinked dynamic model of timber and carbon stocks in Japan's wooden houses and plantation forests
Carbon absorption in growing trees is an important element of a carbon-neutral society, and the long-term storage of carbon stocks is a crucial sustainability challenge. Previous studies have focused on either live-biomass carbon stocks in plantation forests or anthropogenic carbon stocks in man-made objects. For a comprehensive nature-based climate solution, an analytical framework, dataset, and scenario setup for modeling the interrelationship between timber supply and demand are required. This study developed an interlinked material flow analysis model in which the timber demand for wooden houses is connected with timber supply from managed plantation forestry. We demonstrate the model by quantifying both live-biomass and anthropogenic carbon stocks and their potentials in Japan. We compared multiple scenario-runs of the model for wooden house demands estimated by population change with varying combinations of house types, structures, and lifespans. Our results show that carbon stocks will reach a maximum amount of 1.1 billion t-C by 2050 in a scenario of high demand for wooden detached houses with lifespan extensions. On the other hand, we also found that the aging of plantation forests and their reduced carbon-stocking capacities appear inevitable in any scenario owing to the limited demand for timber. Notably, despite the widely different settings of the various scenarios, our results exhibited narrow variances in future potential carbon storage in Japan. This can be explained by the unique population characteristics and building demographics of Japan. These counterintuitive findings highlight the need for interrelated modeling of the forestry and construction sectors. Our model and its scope are versatile and applicable to other case study areas, estimation periods, and target materials.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.