{"title":"利用 XGBoost-SHAP 建立大跨度悬索桥荷载-变形相关性的可解释机器学习模型","authors":"Mingyang Chen , Jingzhou Xin , Qizhi Tang , Tianyu Hu , Yin Zhou , Jianting Zhou","doi":"10.1016/j.dibe.2024.100569","DOIUrl":null,"url":null,"abstract":"<div><div>The deformation of long-span suspension bridges in multiple loads is an important indictor to reflect their operation state. However, the correlation between multiple loads and structural deformation is difficult to quantify. Therefore, this study proposes an explainable machine learning model for the load-deformation correlation in long-span suspension bridges using eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP). Firstly, the structural health monitoring system for a suspension bridge was used to construct the dataset for the training and testing of XGBoost model. Herein, temperature, wind and vehicle loads were used as the input variables, while midspan deflections and expansion joint displacements were treated as outputs. Subsequently, the hyperparameters of XGBoost model were optimized using grid search and 5-fold cross-validation to ensure its prediction performance. Then, the prediction results were compared with other four machine learning methods (i.e., linear regression, artificial neural networks, gradient boosted decision trees and CatBoost). Finally, the correlation between different loads and displacement responses were explained by the SHAP method to identify the contribution of the loads on deformation. The results show that the XGBoost model has the highest prediction accuracy. Compared to vehicle and wind loads, temperature significantly affects the deformation of long-span suspension bridges during daily operation. The effects of temperature and wind on bridge deformation are independent, and there is no significant interaction between these two factors.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100569"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable machine learning model for load-deformation correlation in long-span suspension bridges using XGBoost-SHAP\",\"authors\":\"Mingyang Chen , Jingzhou Xin , Qizhi Tang , Tianyu Hu , Yin Zhou , Jianting Zhou\",\"doi\":\"10.1016/j.dibe.2024.100569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The deformation of long-span suspension bridges in multiple loads is an important indictor to reflect their operation state. However, the correlation between multiple loads and structural deformation is difficult to quantify. Therefore, this study proposes an explainable machine learning model for the load-deformation correlation in long-span suspension bridges using eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP). Firstly, the structural health monitoring system for a suspension bridge was used to construct the dataset for the training and testing of XGBoost model. Herein, temperature, wind and vehicle loads were used as the input variables, while midspan deflections and expansion joint displacements were treated as outputs. Subsequently, the hyperparameters of XGBoost model were optimized using grid search and 5-fold cross-validation to ensure its prediction performance. Then, the prediction results were compared with other four machine learning methods (i.e., linear regression, artificial neural networks, gradient boosted decision trees and CatBoost). Finally, the correlation between different loads and displacement responses were explained by the SHAP method to identify the contribution of the loads on deformation. The results show that the XGBoost model has the highest prediction accuracy. Compared to vehicle and wind loads, temperature significantly affects the deformation of long-span suspension bridges during daily operation. The effects of temperature and wind on bridge deformation are independent, and there is no significant interaction between these two factors.</div></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"20 \",\"pages\":\"Article 100569\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002503\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002503","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Explainable machine learning model for load-deformation correlation in long-span suspension bridges using XGBoost-SHAP
The deformation of long-span suspension bridges in multiple loads is an important indictor to reflect their operation state. However, the correlation between multiple loads and structural deformation is difficult to quantify. Therefore, this study proposes an explainable machine learning model for the load-deformation correlation in long-span suspension bridges using eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP). Firstly, the structural health monitoring system for a suspension bridge was used to construct the dataset for the training and testing of XGBoost model. Herein, temperature, wind and vehicle loads were used as the input variables, while midspan deflections and expansion joint displacements were treated as outputs. Subsequently, the hyperparameters of XGBoost model were optimized using grid search and 5-fold cross-validation to ensure its prediction performance. Then, the prediction results were compared with other four machine learning methods (i.e., linear regression, artificial neural networks, gradient boosted decision trees and CatBoost). Finally, the correlation between different loads and displacement responses were explained by the SHAP method to identify the contribution of the loads on deformation. The results show that the XGBoost model has the highest prediction accuracy. Compared to vehicle and wind loads, temperature significantly affects the deformation of long-span suspension bridges during daily operation. The effects of temperature and wind on bridge deformation are independent, and there is no significant interaction between these two factors.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.