Alireza Grayeli , Azin Ahmadpourian , Stanislav Jurečka , Carlos Luna , Sahar Rezaee , Maryam Karimi
{"title":"研究射频功率对溅射二氧化钛薄膜表面形貌和光学特性的影响","authors":"Alireza Grayeli , Azin Ahmadpourian , Stanislav Jurečka , Carlos Luna , Sahar Rezaee , Maryam Karimi","doi":"10.1016/j.optmat.2024.116363","DOIUrl":null,"url":null,"abstract":"<div><div>Thin films of titanium dioxide (TiO<sub>2</sub>), with thicknesses ranging from 105 to 231 nm, were deposited on glass substrates using radio-frequency (RF) magnetron sputtering in an argon atmosphere at four distinct RF power levels: 40, 70, 100, and 130 W, with the deposition time kept constant. The crystalline structure, surface morphology and optical and semiconductor properties of the obtained films were analyzed using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and UV–visible transmittance spectroscopy. These analyses revealed that the crystallinity of the films improves with increasing RF power, corresponding to an increase in film thickness. Consequently, the samples transition from poorly crystalline or amorphous structure to a monocrystalline rutile phase with a (110) texture. However, at the highest RF power studied, this texture is partially disrupted by the formation of nanocrystals with different orientations. The surface roughness exhibited multifractal characteristics, with complexity systematically decreasing and surface stiffness reducing as RF power increased. Refractive indices and optical band gap energies were determined using the Swanepoel and Tauc plot methods, respectively. The films exhibited a notable increase in the refractive index and a decrease in the optical band gap, from 3.81 eV to 3.52 eV, as the RF power was increased. This underscores the influence of RF power on the optical and semiconductor properties of TiO<sub>2</sub> films.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116363"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the influence of RF power on the surface morphological and optical properties of sputtered TiO2 thin films\",\"authors\":\"Alireza Grayeli , Azin Ahmadpourian , Stanislav Jurečka , Carlos Luna , Sahar Rezaee , Maryam Karimi\",\"doi\":\"10.1016/j.optmat.2024.116363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thin films of titanium dioxide (TiO<sub>2</sub>), with thicknesses ranging from 105 to 231 nm, were deposited on glass substrates using radio-frequency (RF) magnetron sputtering in an argon atmosphere at four distinct RF power levels: 40, 70, 100, and 130 W, with the deposition time kept constant. The crystalline structure, surface morphology and optical and semiconductor properties of the obtained films were analyzed using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and UV–visible transmittance spectroscopy. These analyses revealed that the crystallinity of the films improves with increasing RF power, corresponding to an increase in film thickness. Consequently, the samples transition from poorly crystalline or amorphous structure to a monocrystalline rutile phase with a (110) texture. However, at the highest RF power studied, this texture is partially disrupted by the formation of nanocrystals with different orientations. The surface roughness exhibited multifractal characteristics, with complexity systematically decreasing and surface stiffness reducing as RF power increased. Refractive indices and optical band gap energies were determined using the Swanepoel and Tauc plot methods, respectively. The films exhibited a notable increase in the refractive index and a decrease in the optical band gap, from 3.81 eV to 3.52 eV, as the RF power was increased. This underscores the influence of RF power on the optical and semiconductor properties of TiO<sub>2</sub> films.</div></div>\",\"PeriodicalId\":19564,\"journal\":{\"name\":\"Optical Materials\",\"volume\":\"157 \",\"pages\":\"Article 116363\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925346724015465\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724015465","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the influence of RF power on the surface morphological and optical properties of sputtered TiO2 thin films
Thin films of titanium dioxide (TiO2), with thicknesses ranging from 105 to 231 nm, were deposited on glass substrates using radio-frequency (RF) magnetron sputtering in an argon atmosphere at four distinct RF power levels: 40, 70, 100, and 130 W, with the deposition time kept constant. The crystalline structure, surface morphology and optical and semiconductor properties of the obtained films were analyzed using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and UV–visible transmittance spectroscopy. These analyses revealed that the crystallinity of the films improves with increasing RF power, corresponding to an increase in film thickness. Consequently, the samples transition from poorly crystalline or amorphous structure to a monocrystalline rutile phase with a (110) texture. However, at the highest RF power studied, this texture is partially disrupted by the formation of nanocrystals with different orientations. The surface roughness exhibited multifractal characteristics, with complexity systematically decreasing and surface stiffness reducing as RF power increased. Refractive indices and optical band gap energies were determined using the Swanepoel and Tauc plot methods, respectively. The films exhibited a notable increase in the refractive index and a decrease in the optical band gap, from 3.81 eV to 3.52 eV, as the RF power was increased. This underscores the influence of RF power on the optical and semiconductor properties of TiO2 films.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.