使用具有梯度单胞结构的原子级薄 MoS2 在硅太阳能电池中实现宽带和广角减反射

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-11-14 DOI:10.1016/j.solener.2024.113088
Yuncai Feng, Zhengyang Huang, Xiaomin Zhang, Tianhui Qiu
{"title":"使用具有梯度单胞结构的原子级薄 MoS2 在硅太阳能电池中实现宽带和广角减反射","authors":"Yuncai Feng,&nbsp;Zhengyang Huang,&nbsp;Xiaomin Zhang,&nbsp;Tianhui Qiu","doi":"10.1016/j.solener.2024.113088","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructures have been extensively utilized to enhance light trapping and minimize reflection losses in silicon solar cells, leading to significant improvements in photovoltaic performance. Understanding how these structures influence broadband and omnidirectional antireflection (AR) is crucial for advancing solar technologies. In this study, we present an innovative AR design that integrates atomically thin MoS<sub>2</sub> with a gradient unit cell structure. Using finite-difference time-domain (FDTD) simulations, we demonstrate the exceptional broadband and wide-angle AR performance of this configuration. The gradient unit cell design enables effective light management across a wide range of incident angles and wavelengths. This approach offers a simpler alternative to conventional graded refractive index structures, reducing the complexity of fabrication while maintaining high efficiency. Our findings highlight the potential of this structure to revolutionize solar cell performance, paving the way for next-generation photovoltaic technologies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113088"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband and wide-angle antireflection in silicon solar cells using atomically thin MoS2 with a gradient unit cell structure\",\"authors\":\"Yuncai Feng,&nbsp;Zhengyang Huang,&nbsp;Xiaomin Zhang,&nbsp;Tianhui Qiu\",\"doi\":\"10.1016/j.solener.2024.113088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanostructures have been extensively utilized to enhance light trapping and minimize reflection losses in silicon solar cells, leading to significant improvements in photovoltaic performance. Understanding how these structures influence broadband and omnidirectional antireflection (AR) is crucial for advancing solar technologies. In this study, we present an innovative AR design that integrates atomically thin MoS<sub>2</sub> with a gradient unit cell structure. Using finite-difference time-domain (FDTD) simulations, we demonstrate the exceptional broadband and wide-angle AR performance of this configuration. The gradient unit cell design enables effective light management across a wide range of incident angles and wavelengths. This approach offers a simpler alternative to conventional graded refractive index structures, reducing the complexity of fabrication while maintaining high efficiency. Our findings highlight the potential of this structure to revolutionize solar cell performance, paving the way for next-generation photovoltaic technologies.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"284 \",\"pages\":\"Article 113088\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24007837\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007837","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构已被广泛用于增强硅太阳能电池的光捕获和减少反射损失,从而显著提高光伏性能。了解这些结构如何影响宽带和全向抗反射(AR)对于太阳能技术的发展至关重要。在本研究中,我们提出了一种创新的 AR 设计,它将原子级薄 MoS2 与梯度单元结构相结合。通过有限差分时域 (FDTD) 仿真,我们证明了这种配置具有卓越的宽带和广角抗反射性能。梯度单元尺寸设计能够在广泛的入射角度和波长范围内实现有效的光管理。与传统的梯度折射率结构相比,这种方法提供了一种更简单的替代方案,在保持高效率的同时降低了制造的复杂性。我们的研究结果凸显了这种结构彻底改变太阳能电池性能的潜力,为下一代光伏技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Broadband and wide-angle antireflection in silicon solar cells using atomically thin MoS2 with a gradient unit cell structure
Nanostructures have been extensively utilized to enhance light trapping and minimize reflection losses in silicon solar cells, leading to significant improvements in photovoltaic performance. Understanding how these structures influence broadband and omnidirectional antireflection (AR) is crucial for advancing solar technologies. In this study, we present an innovative AR design that integrates atomically thin MoS2 with a gradient unit cell structure. Using finite-difference time-domain (FDTD) simulations, we demonstrate the exceptional broadband and wide-angle AR performance of this configuration. The gradient unit cell design enables effective light management across a wide range of incident angles and wavelengths. This approach offers a simpler alternative to conventional graded refractive index structures, reducing the complexity of fabrication while maintaining high efficiency. Our findings highlight the potential of this structure to revolutionize solar cell performance, paving the way for next-generation photovoltaic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Corrigendum to “Experimental investigation of a photovoltaic solar air conditioning system and comparison with conventional unit in the context of the state of Piaui, Brazil” [Sol. Energy 272 (2024) 112492] Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: Development of an off-grid prototype Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1