{"title":"用于高性能超级电容器的过渡金属氧化物基复合材料前沿:综述","authors":"Mamta Bulla , Sarita Sindhu , Annu Sheokand , Raman Devi , Vinay Kumar","doi":"10.1016/j.inoche.2024.113429","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for affordable and eco-friendly energy storage solutions is essential to meeting the challenges of integrating next-generation energy sources. Supercapacitors (SCs) have the potential to be a key electrochemical storage technology for intermittent renewable energy sources due to their long cycle life, rapid charging/discharging rates, and high power density. However, their relatively low energy density remains a challenge. Extensive research has been conducted on electrode materials, particularly transition metal oxide (TMO) composites, to assess their value in the SC field. However, TMOs face significant challenges, such as limited electron and ion transport and poor electronic conductivity, which hinder their electrochemical performance in energy storage applications. Therefore, integrating carbon-based materials or conductive polymers presents a promising strategy for achieving higher energy density, enhanced specific power, and faster charging/discharging rates, thereby improving the overall efficiency of SCs. This review provides recent advancements in TMOs and their binary and ternary composites, emphasizing synthesis methods and their effects on electrochemical performance, while highlighting the potential of flexible and sustainable supercapacitors to meet increasing energy demands. Finally, the discussion on the current challenges and future outlook for these materials in supercapacitors as energy storage solutions will open avenues for further research and exploration.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"170 ","pages":"Article 113429"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontiers in transition metal oxide-based composites for high-performance supercapacitors: A comprehensive review\",\"authors\":\"Mamta Bulla , Sarita Sindhu , Annu Sheokand , Raman Devi , Vinay Kumar\",\"doi\":\"10.1016/j.inoche.2024.113429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The demand for affordable and eco-friendly energy storage solutions is essential to meeting the challenges of integrating next-generation energy sources. Supercapacitors (SCs) have the potential to be a key electrochemical storage technology for intermittent renewable energy sources due to their long cycle life, rapid charging/discharging rates, and high power density. However, their relatively low energy density remains a challenge. Extensive research has been conducted on electrode materials, particularly transition metal oxide (TMO) composites, to assess their value in the SC field. However, TMOs face significant challenges, such as limited electron and ion transport and poor electronic conductivity, which hinder their electrochemical performance in energy storage applications. Therefore, integrating carbon-based materials or conductive polymers presents a promising strategy for achieving higher energy density, enhanced specific power, and faster charging/discharging rates, thereby improving the overall efficiency of SCs. This review provides recent advancements in TMOs and their binary and ternary composites, emphasizing synthesis methods and their effects on electrochemical performance, while highlighting the potential of flexible and sustainable supercapacitors to meet increasing energy demands. Finally, the discussion on the current challenges and future outlook for these materials in supercapacitors as energy storage solutions will open avenues for further research and exploration.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"170 \",\"pages\":\"Article 113429\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700324014199\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324014199","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Frontiers in transition metal oxide-based composites for high-performance supercapacitors: A comprehensive review
The demand for affordable and eco-friendly energy storage solutions is essential to meeting the challenges of integrating next-generation energy sources. Supercapacitors (SCs) have the potential to be a key electrochemical storage technology for intermittent renewable energy sources due to their long cycle life, rapid charging/discharging rates, and high power density. However, their relatively low energy density remains a challenge. Extensive research has been conducted on electrode materials, particularly transition metal oxide (TMO) composites, to assess their value in the SC field. However, TMOs face significant challenges, such as limited electron and ion transport and poor electronic conductivity, which hinder their electrochemical performance in energy storage applications. Therefore, integrating carbon-based materials or conductive polymers presents a promising strategy for achieving higher energy density, enhanced specific power, and faster charging/discharging rates, thereby improving the overall efficiency of SCs. This review provides recent advancements in TMOs and their binary and ternary composites, emphasizing synthesis methods and their effects on electrochemical performance, while highlighting the potential of flexible and sustainable supercapacitors to meet increasing energy demands. Finally, the discussion on the current challenges and future outlook for these materials in supercapacitors as energy storage solutions will open avenues for further research and exploration.
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.