楝树锯屑和高密度聚乙烯共同热解产生富含芳香烃的生物油:沸石介孔的意义

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-11-16 DOI:10.1016/j.fuel.2024.133724
Jingyue Wang , Liu Wu , Fanfan Huang , Jie Liang
{"title":"楝树锯屑和高密度聚乙烯共同热解产生富含芳香烃的生物油:沸石介孔的意义","authors":"Jingyue Wang ,&nbsp;Liu Wu ,&nbsp;Fanfan Huang ,&nbsp;Jie Liang","doi":"10.1016/j.fuel.2024.133724","DOIUrl":null,"url":null,"abstract":"<div><div>Co-pyrolysis of biomass and plastic was conducive to aromatics-rich bio-oil production, though the significance of zeolite mesopores in co-pyrolysis was still lacking and required further investigation. Herein, a conventional ZSM-5 and its two mesoporous deviants (hollow HS-ZSM-5 and core–shell hierarchical ZSM-5@SBA-15) were synthesized and utilized as catalysts in the co-pyrolysis of neem sawdust (NS) and high-density polyethylene (HDPE). Results showed that compared to ZSM-5, both the mesoporous zeolites enhanced aromatics production. And HS-ZSM-5 with an interior mesoporous cavity performed better in improving the monocyclic aromatic hydrocarbons (MAHs) fraction. An optimization of co-pyrolysis conditions (<em>e.g.</em>, HDPE percentage, catalyst loading, co-pyrolysis temperature) further improved the MAHs selectivity to 33.8 area%. The synergy between NS and HDPE over mesoporous zeolites was also compared. While the aromatization between short-chain olefins was dominant in aromatics production over ZSM-5@SBA-15, the Diels–Alder reaction between NS-derived furans and HDPE-derived olefins contributed more in that over HS-ZSM-5.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133724"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-pyrolysis of neem sawdust and high-density polyethylene towards aromatic-rich bio-oil: Significance of zeolite mesopores\",\"authors\":\"Jingyue Wang ,&nbsp;Liu Wu ,&nbsp;Fanfan Huang ,&nbsp;Jie Liang\",\"doi\":\"10.1016/j.fuel.2024.133724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Co-pyrolysis of biomass and plastic was conducive to aromatics-rich bio-oil production, though the significance of zeolite mesopores in co-pyrolysis was still lacking and required further investigation. Herein, a conventional ZSM-5 and its two mesoporous deviants (hollow HS-ZSM-5 and core–shell hierarchical ZSM-5@SBA-15) were synthesized and utilized as catalysts in the co-pyrolysis of neem sawdust (NS) and high-density polyethylene (HDPE). Results showed that compared to ZSM-5, both the mesoporous zeolites enhanced aromatics production. And HS-ZSM-5 with an interior mesoporous cavity performed better in improving the monocyclic aromatic hydrocarbons (MAHs) fraction. An optimization of co-pyrolysis conditions (<em>e.g.</em>, HDPE percentage, catalyst loading, co-pyrolysis temperature) further improved the MAHs selectivity to 33.8 area%. The synergy between NS and HDPE over mesoporous zeolites was also compared. While the aromatization between short-chain olefins was dominant in aromatics production over ZSM-5@SBA-15, the Diels–Alder reaction between NS-derived furans and HDPE-derived olefins contributed more in that over HS-ZSM-5.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"382 \",\"pages\":\"Article 133724\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124028734\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028734","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

生物质和塑料的共热解有利于生产富含芳烃的生物油,但沸石介孔在共热解中的意义仍有待进一步研究。本文合成了传统的 ZSM-5 及其两种介孔异构体(空心 HS-ZSM-5 和核壳分层 ZSM-5@SBA-15),并将其用作楝树锯屑(NS)和高密度聚乙烯(HDPE)共热解的催化剂。结果表明,与 ZSM-5 相比,两种介孔沸石都能提高芳烃的产量。而具有内部介孔空腔的 HS-ZSM-5 在提高单环芳烃(MAHs)馏分方面表现更好。优化共热解条件(如高密度聚乙烯比例、催化剂负载、共热解温度)可进一步将 MAHs 选择性提高到 33.8%。此外,还比较了介孔沸石上的 NS 和 HDPE 的协同作用。在 ZSM-5@SBA-15 上,短链烯烃之间的芳香化反应在芳烃生产中占主导地位,而在 HS-ZSM-5 上,NS 衍生的呋喃和 HDPE 衍生的烯烃之间的 Diels-Alder 反应对芳烃生产的贡献更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-pyrolysis of neem sawdust and high-density polyethylene towards aromatic-rich bio-oil: Significance of zeolite mesopores
Co-pyrolysis of biomass and plastic was conducive to aromatics-rich bio-oil production, though the significance of zeolite mesopores in co-pyrolysis was still lacking and required further investigation. Herein, a conventional ZSM-5 and its two mesoporous deviants (hollow HS-ZSM-5 and core–shell hierarchical ZSM-5@SBA-15) were synthesized and utilized as catalysts in the co-pyrolysis of neem sawdust (NS) and high-density polyethylene (HDPE). Results showed that compared to ZSM-5, both the mesoporous zeolites enhanced aromatics production. And HS-ZSM-5 with an interior mesoporous cavity performed better in improving the monocyclic aromatic hydrocarbons (MAHs) fraction. An optimization of co-pyrolysis conditions (e.g., HDPE percentage, catalyst loading, co-pyrolysis temperature) further improved the MAHs selectivity to 33.8 area%. The synergy between NS and HDPE over mesoporous zeolites was also compared. While the aromatization between short-chain olefins was dominant in aromatics production over ZSM-5@SBA-15, the Diels–Alder reaction between NS-derived furans and HDPE-derived olefins contributed more in that over HS-ZSM-5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Highly efficient Zr-based coordination polymer for catalytic transfer hydrogenation of 5-hydroxymethylfurfural: Tuning acid strength and enhancing stability Engineering noble metal-free nickel catalysts for highly efficient liquid fuel production from waste polyolefins under mild conditions A functional fluorine (F)-containing oxidiser of nano-networked NH4CuF3 to improve the combustion efficiency of Al powder Gold nanocatalysts supported on Mono-/Mixed oxides for efficient synthesis of methyl methacrylate Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1