{"title":"开发可持续的高性能沙漠砂混凝土:压缩浇注的工程和环境影响","authors":"Syed Minhaj Saleem Kazmi , Muhammad Junaid Munir , Yu-Fei Wu","doi":"10.1016/j.resconrec.2024.108002","DOIUrl":null,"url":null,"abstract":"<div><div>River sand is essential for concrete but its production depletes 50 billion tons of resources annually causing scarcity and environmental issues. Desert sand (DS) covering 6 million square kilometers could help address this scarcity but has inferior properties. This study develops high-strength desert sand concrete (DSC) using 100 % DS through compression casting. Nine concrete mixes were prepared with varying DS replacement levels (0, 50, 100 %) and design strengths (30, 50, 70 MPa). Compression casting improved DSC's compressive and split tensile strength by up to 93 % and 54 % respectively compared to traditional concrete. It also reduced water absorption and voids by up to 41 % and 34 % and enhanced chloride and carbonation resistance by up to 64 % and 100 %. XRD, DSC-TG, and SEM analyses also confirm these results. Compression casting of DSC cut costs, CO<sub>2</sub> emissions, and energy consumption by up to 57 %, 43 %, and 42 % respectively. This innovative DSC offers superior engineering, environmental, and economic benefits as a sustainable alternative to traditional concrete.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 108002"},"PeriodicalIF":11.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of sustainable high-performance desert sand concrete: Engineering and environmental impacts of compression casting\",\"authors\":\"Syed Minhaj Saleem Kazmi , Muhammad Junaid Munir , Yu-Fei Wu\",\"doi\":\"10.1016/j.resconrec.2024.108002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>River sand is essential for concrete but its production depletes 50 billion tons of resources annually causing scarcity and environmental issues. Desert sand (DS) covering 6 million square kilometers could help address this scarcity but has inferior properties. This study develops high-strength desert sand concrete (DSC) using 100 % DS through compression casting. Nine concrete mixes were prepared with varying DS replacement levels (0, 50, 100 %) and design strengths (30, 50, 70 MPa). Compression casting improved DSC's compressive and split tensile strength by up to 93 % and 54 % respectively compared to traditional concrete. It also reduced water absorption and voids by up to 41 % and 34 % and enhanced chloride and carbonation resistance by up to 64 % and 100 %. XRD, DSC-TG, and SEM analyses also confirm these results. Compression casting of DSC cut costs, CO<sub>2</sub> emissions, and energy consumption by up to 57 %, 43 %, and 42 % respectively. This innovative DSC offers superior engineering, environmental, and economic benefits as a sustainable alternative to traditional concrete.</div></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"212 \",\"pages\":\"Article 108002\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924005937\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005937","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Development of sustainable high-performance desert sand concrete: Engineering and environmental impacts of compression casting
River sand is essential for concrete but its production depletes 50 billion tons of resources annually causing scarcity and environmental issues. Desert sand (DS) covering 6 million square kilometers could help address this scarcity but has inferior properties. This study develops high-strength desert sand concrete (DSC) using 100 % DS through compression casting. Nine concrete mixes were prepared with varying DS replacement levels (0, 50, 100 %) and design strengths (30, 50, 70 MPa). Compression casting improved DSC's compressive and split tensile strength by up to 93 % and 54 % respectively compared to traditional concrete. It also reduced water absorption and voids by up to 41 % and 34 % and enhanced chloride and carbonation resistance by up to 64 % and 100 %. XRD, DSC-TG, and SEM analyses also confirm these results. Compression casting of DSC cut costs, CO2 emissions, and energy consumption by up to 57 %, 43 %, and 42 % respectively. This innovative DSC offers superior engineering, environmental, and economic benefits as a sustainable alternative to traditional concrete.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.