Mingjun Chen , Xueni Chen , Yili Kang , Zheng Cheng , Lijun You , Gang Xiong , Dongsheng Yang , Chaozhong Qin
{"title":"通过高温处理减轻常压页岩气藏水堵的研究:传热范围的启示","authors":"Mingjun Chen , Xueni Chen , Yili Kang , Zheng Cheng , Lijun You , Gang Xiong , Dongsheng Yang , Chaozhong Qin","doi":"10.1016/j.fuel.2024.133667","DOIUrl":null,"url":null,"abstract":"<div><div>A normal-pressure shale gas reservoir generally exhibits a low formation pressure coefficient, making fracturing fluid flow-back difficult and leading to severe water blocking. Formation heat treatment (FHT) can effectively remove water and induce new fractures to prevent such formation damage and increase shale permeability. However, the range of the heat treatment in shale gas reservoir remains unclear, as does its effectiveness in mitigating water blocking. Laboratory experiments and numerical simulation are conducted in this paper. The experimental results indicate that shale permeability is significantly improved by FHT. A mathematical model coupling heat transfer and shale permeability is established, considering the initial reservoir permeability and heat treatment time. The heat transfer range around a shale gas well after injection of 800℃ gas at a pressure difference of 5 MPa is simulated. The results indicate that (1) the heat transfer range can extend over 1.0 m within a heat treatment time longer than 48 h for a shale formation with the permeability more than 0.1mD after hydraulic fracturing; (2) a one order of magnitude increase in permeability enhances the heat transfer range by 40 %-100 %; (3) with each 24 h increase in heat treatment time, the heat transfer range expands by 27 %- 40 %; (4) the primary factors controlling the heat transfer range are initial reservoir permeability and heat treatment time; (5) an autocatalytic effect in actual FHT suggests the treatment range may exceed simulation estimates. This study illuminates the stimulation effect of FHT technology, which is beneficial for further understanding the increase of productivity of a normal-pressure shale gas well.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133667"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of water blocking mitigation in a normal-pressure shale gas reservoir by high-temperature treatment: Insights from heat transfer range\",\"authors\":\"Mingjun Chen , Xueni Chen , Yili Kang , Zheng Cheng , Lijun You , Gang Xiong , Dongsheng Yang , Chaozhong Qin\",\"doi\":\"10.1016/j.fuel.2024.133667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A normal-pressure shale gas reservoir generally exhibits a low formation pressure coefficient, making fracturing fluid flow-back difficult and leading to severe water blocking. Formation heat treatment (FHT) can effectively remove water and induce new fractures to prevent such formation damage and increase shale permeability. However, the range of the heat treatment in shale gas reservoir remains unclear, as does its effectiveness in mitigating water blocking. Laboratory experiments and numerical simulation are conducted in this paper. The experimental results indicate that shale permeability is significantly improved by FHT. A mathematical model coupling heat transfer and shale permeability is established, considering the initial reservoir permeability and heat treatment time. The heat transfer range around a shale gas well after injection of 800℃ gas at a pressure difference of 5 MPa is simulated. The results indicate that (1) the heat transfer range can extend over 1.0 m within a heat treatment time longer than 48 h for a shale formation with the permeability more than 0.1mD after hydraulic fracturing; (2) a one order of magnitude increase in permeability enhances the heat transfer range by 40 %-100 %; (3) with each 24 h increase in heat treatment time, the heat transfer range expands by 27 %- 40 %; (4) the primary factors controlling the heat transfer range are initial reservoir permeability and heat treatment time; (5) an autocatalytic effect in actual FHT suggests the treatment range may exceed simulation estimates. This study illuminates the stimulation effect of FHT technology, which is beneficial for further understanding the increase of productivity of a normal-pressure shale gas well.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"382 \",\"pages\":\"Article 133667\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124028163\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028163","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of water blocking mitigation in a normal-pressure shale gas reservoir by high-temperature treatment: Insights from heat transfer range
A normal-pressure shale gas reservoir generally exhibits a low formation pressure coefficient, making fracturing fluid flow-back difficult and leading to severe water blocking. Formation heat treatment (FHT) can effectively remove water and induce new fractures to prevent such formation damage and increase shale permeability. However, the range of the heat treatment in shale gas reservoir remains unclear, as does its effectiveness in mitigating water blocking. Laboratory experiments and numerical simulation are conducted in this paper. The experimental results indicate that shale permeability is significantly improved by FHT. A mathematical model coupling heat transfer and shale permeability is established, considering the initial reservoir permeability and heat treatment time. The heat transfer range around a shale gas well after injection of 800℃ gas at a pressure difference of 5 MPa is simulated. The results indicate that (1) the heat transfer range can extend over 1.0 m within a heat treatment time longer than 48 h for a shale formation with the permeability more than 0.1mD after hydraulic fracturing; (2) a one order of magnitude increase in permeability enhances the heat transfer range by 40 %-100 %; (3) with each 24 h increase in heat treatment time, the heat transfer range expands by 27 %- 40 %; (4) the primary factors controlling the heat transfer range are initial reservoir permeability and heat treatment time; (5) an autocatalytic effect in actual FHT suggests the treatment range may exceed simulation estimates. This study illuminates the stimulation effect of FHT technology, which is beneficial for further understanding the increase of productivity of a normal-pressure shale gas well.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.