Zhao Lei , Qiannan Yue , Qin Pei , Ji Chen , Qiang Ling , Liu Lei , Gangli Zhu , Ping Cui
{"title":"从实验和分子模拟的角度探索冶金焦炭的热性能","authors":"Zhao Lei , Qiannan Yue , Qin Pei , Ji Chen , Qiang Ling , Liu Lei , Gangli Zhu , Ping Cui","doi":"10.1016/j.cjche.2024.06.029","DOIUrl":null,"url":null,"abstract":"<div><div>The Chinese standard method of GB/T 4000–2017 was unable to accurately measure the coke thermal properties in the large blast furnace. Therefore, the coke compressive strength (CCS) test at a high temperature was designed to examine the coke thermal properties. Then, the large-scale coke model (sp<sup>2</sup>C<sub>17421</sub>sp<sup>3</sup>C<sub>6579</sub>) was established. After, the ReaxFF molecular dynamics simulations were implemented to mimic the coke solution loss (CSL) and the CCS at the high temperature. It was found that the adsorption energy and the diffusion energy of micropores were greater than those of mesopores and macropores, indicating that the CSL reaction mainly happened in the coke micropore. It was discovered that the CSL reaction mechanism was the sp<sup>3</sup> C oxidization mechanism with the transient state of ketene structure. And, it was detected that the CCS process was divided into the plastic deformation, the instantaneous fracture and the elastic deformation and yield, which was caused by the local reconstruction, the overall folding and the center stretching of carbon layer, respectively. By comparing simulated results with experiments, it was proved that obtained mechanisms were valid. The proposed experimental and simulated methods provided a novel method to measure and understand the coke thermal properties.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"75 ","pages":"Pages 253-265"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the metallurgical coke thermal properties in viewpoint of experiment and molecular simulation\",\"authors\":\"Zhao Lei , Qiannan Yue , Qin Pei , Ji Chen , Qiang Ling , Liu Lei , Gangli Zhu , Ping Cui\",\"doi\":\"10.1016/j.cjche.2024.06.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Chinese standard method of GB/T 4000–2017 was unable to accurately measure the coke thermal properties in the large blast furnace. Therefore, the coke compressive strength (CCS) test at a high temperature was designed to examine the coke thermal properties. Then, the large-scale coke model (sp<sup>2</sup>C<sub>17421</sub>sp<sup>3</sup>C<sub>6579</sub>) was established. After, the ReaxFF molecular dynamics simulations were implemented to mimic the coke solution loss (CSL) and the CCS at the high temperature. It was found that the adsorption energy and the diffusion energy of micropores were greater than those of mesopores and macropores, indicating that the CSL reaction mainly happened in the coke micropore. It was discovered that the CSL reaction mechanism was the sp<sup>3</sup> C oxidization mechanism with the transient state of ketene structure. And, it was detected that the CCS process was divided into the plastic deformation, the instantaneous fracture and the elastic deformation and yield, which was caused by the local reconstruction, the overall folding and the center stretching of carbon layer, respectively. By comparing simulated results with experiments, it was proved that obtained mechanisms were valid. The proposed experimental and simulated methods provided a novel method to measure and understand the coke thermal properties.</div></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":\"75 \",\"pages\":\"Pages 253-265\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954124002799\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124002799","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Exploring the metallurgical coke thermal properties in viewpoint of experiment and molecular simulation
The Chinese standard method of GB/T 4000–2017 was unable to accurately measure the coke thermal properties in the large blast furnace. Therefore, the coke compressive strength (CCS) test at a high temperature was designed to examine the coke thermal properties. Then, the large-scale coke model (sp2C17421sp3C6579) was established. After, the ReaxFF molecular dynamics simulations were implemented to mimic the coke solution loss (CSL) and the CCS at the high temperature. It was found that the adsorption energy and the diffusion energy of micropores were greater than those of mesopores and macropores, indicating that the CSL reaction mainly happened in the coke micropore. It was discovered that the CSL reaction mechanism was the sp3 C oxidization mechanism with the transient state of ketene structure. And, it was detected that the CCS process was divided into the plastic deformation, the instantaneous fracture and the elastic deformation and yield, which was caused by the local reconstruction, the overall folding and the center stretching of carbon layer, respectively. By comparing simulated results with experiments, it was proved that obtained mechanisms were valid. The proposed experimental and simulated methods provided a novel method to measure and understand the coke thermal properties.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.