基于全形嵌入法的水力-热力-电力多能源网络动态运行的时间不同步分析

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS Sustainable Energy Grids & Networks Pub Date : 2024-11-06 DOI:10.1016/j.segan.2024.101559
Weijia Yang , Yuping Huang , Suliang Liao , Daiqing Zhao , Duan Yao
{"title":"基于全形嵌入法的水力-热力-电力多能源网络动态运行的时间不同步分析","authors":"Weijia Yang ,&nbsp;Yuping Huang ,&nbsp;Suliang Liao ,&nbsp;Daiqing Zhao ,&nbsp;Duan Yao","doi":"10.1016/j.segan.2024.101559","DOIUrl":null,"url":null,"abstract":"<div><div>Analyzing the operational states of multiple energy networks (MEN) in multi-energy systems is crucial for ensuring system stability. The dynamic operational characteristics of different energy flows pose challenges for computational analysis. Traditional steady-state methods are inadequate for addressing the dynamics of MEN, especially when dealing with temporal discrepancies between hydraulic and thermal flows in thermal networks (TN) and the heterogeneity between TN and electrical networks. Therefore, this paper proposes a novel holomorphic embedding method (HEM) based on multi-stage decomposition method. The developed HEM constructs a time coefficient matrix and utilize inner-outer loop recursion to handle the time lag between thermal flow and hydraulic flow in the TN. Additionally, we reconstruct a holomorphic matrix, integrating hydraulic flow to bridge thermal and electric power flows, thereby improving the operational heterogeneity among different networks. Real-case simulations show that when the Taylor expansion order in HEM is equal to 4, the proposed method achieves a mere 1 % discrepancy from actual operational data, enhancing computational efficiency by 60 % compared to the Newton-Raphson method. Moreover, in this real-case scenario, the TN exhibits a maximum delay response time of 180 seconds compared to electrical networks. Exploiting this delay time effectively increases renewable energy generation within multi-energy systems by 961.58 kW per day.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"40 ","pages":"Article 101559"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal asynchrony analysis for dynamic operation of hydraulic-thermal-electricity multiple energy networks based on holomorphic embedding method\",\"authors\":\"Weijia Yang ,&nbsp;Yuping Huang ,&nbsp;Suliang Liao ,&nbsp;Daiqing Zhao ,&nbsp;Duan Yao\",\"doi\":\"10.1016/j.segan.2024.101559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Analyzing the operational states of multiple energy networks (MEN) in multi-energy systems is crucial for ensuring system stability. The dynamic operational characteristics of different energy flows pose challenges for computational analysis. Traditional steady-state methods are inadequate for addressing the dynamics of MEN, especially when dealing with temporal discrepancies between hydraulic and thermal flows in thermal networks (TN) and the heterogeneity between TN and electrical networks. Therefore, this paper proposes a novel holomorphic embedding method (HEM) based on multi-stage decomposition method. The developed HEM constructs a time coefficient matrix and utilize inner-outer loop recursion to handle the time lag between thermal flow and hydraulic flow in the TN. Additionally, we reconstruct a holomorphic matrix, integrating hydraulic flow to bridge thermal and electric power flows, thereby improving the operational heterogeneity among different networks. Real-case simulations show that when the Taylor expansion order in HEM is equal to 4, the proposed method achieves a mere 1 % discrepancy from actual operational data, enhancing computational efficiency by 60 % compared to the Newton-Raphson method. Moreover, in this real-case scenario, the TN exhibits a maximum delay response time of 180 seconds compared to electrical networks. Exploiting this delay time effectively increases renewable energy generation within multi-energy systems by 961.58 kW per day.</div></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":\"40 \",\"pages\":\"Article 101559\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467724002893\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002893","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

分析多能源系统中多能源网络(MEN)的运行状态对于确保系统稳定性至关重要。不同能源流的动态运行特性给计算分析带来了挑战。传统的稳态方法不足以解决多能源网络(MEN)的动态问题,尤其是在处理热网(TN)中水力流和热力流之间的时间差异以及热网和电网之间的异质性时。因此,本文提出了一种基于多级分解法的新型全态嵌入法(HEM)。所开发的 HEM 构建了一个时间系数矩阵,并利用内-外循环递归来处理 TN 中热流与水流之间的时滞。此外,我们还重建了一个全态矩阵,将水力流整合为热力流和电力流的桥梁,从而改善了不同网络之间的运行异质性。实际案例模拟表明,当 HEM 中的泰勒扩展阶数等于 4 时,所提出的方法与实际运行数据的偏差仅为 1%,与牛顿-拉斐森方法相比,计算效率提高了 60%。此外,在这种实际情况下,与电网相比,TN 的最大延迟响应时间为 180 秒。利用这一延迟时间,多能源系统中的可再生能源发电量每天可有效增加 961.58 千瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal asynchrony analysis for dynamic operation of hydraulic-thermal-electricity multiple energy networks based on holomorphic embedding method
Analyzing the operational states of multiple energy networks (MEN) in multi-energy systems is crucial for ensuring system stability. The dynamic operational characteristics of different energy flows pose challenges for computational analysis. Traditional steady-state methods are inadequate for addressing the dynamics of MEN, especially when dealing with temporal discrepancies between hydraulic and thermal flows in thermal networks (TN) and the heterogeneity between TN and electrical networks. Therefore, this paper proposes a novel holomorphic embedding method (HEM) based on multi-stage decomposition method. The developed HEM constructs a time coefficient matrix and utilize inner-outer loop recursion to handle the time lag between thermal flow and hydraulic flow in the TN. Additionally, we reconstruct a holomorphic matrix, integrating hydraulic flow to bridge thermal and electric power flows, thereby improving the operational heterogeneity among different networks. Real-case simulations show that when the Taylor expansion order in HEM is equal to 4, the proposed method achieves a mere 1 % discrepancy from actual operational data, enhancing computational efficiency by 60 % compared to the Newton-Raphson method. Moreover, in this real-case scenario, the TN exhibits a maximum delay response time of 180 seconds compared to electrical networks. Exploiting this delay time effectively increases renewable energy generation within multi-energy systems by 961.58 kW per day.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
期刊最新文献
An authorization framework to mitigate insider threat in CIM-based smart grid Emergency power supply scheme and fault repair strategy for distribution networks considering electric -traffic synergy Data-driven dynamic state estimation in power systems via sparse regression unscented Kalman filter Multi agent framework for consumer demand response in electricity market: Applications and recent advancement A hybrid machine learning-based cyber-threat mitigation in energy and flexibility scheduling of interconnected local energy networks considering a negawatt demand response portfolio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1