Linjiao Ren , Jingtong Sun , Shilin Ma , Diankang Wang , Rubin Qi , Pei Zhang , Qingfang Zhang , Zirui Qin , Liying Jiang
{"title":"基于 G 型四联体的新型横向流动铅离子检测分析法","authors":"Linjiao Ren , Jingtong Sun , Shilin Ma , Diankang Wang , Rubin Qi , Pei Zhang , Qingfang Zhang , Zirui Qin , Liying Jiang","doi":"10.1016/j.bej.2024.109562","DOIUrl":null,"url":null,"abstract":"<div><div>Lead ion residues pose potential health risks to humans. To develop a cost-effective and user-friendly portable lead ion detection method, a novel lateral flow test strip was designed and fabricated based on the G-quadruplex structure. Initially, G4 and its complementary strand antiG4 are in a double-stranded form in the assay solution. After adding lead ions, these ions compete with antiG4 to bind to G4 and form G-quadruplex structures, thus releasing a large number of antiG4 single strands. Through base pairing, one end of the antiG4 was linked to a recognition element containing gold nanoparticles, while the other end was captured by a test line probe, resulting in a red band on the test line. The color change of the test line was positively correlated with the concentration of lead ions. Results showed that by observing the color change of the test line under optimized experimental conditions, lead ion concentration could be detected with a visual detection limit of 20 nM. Quantitative analysis using ImageJ software indicated that the test strip had a linear detection range of 10–2000 nM, with a detection limit of 7.32 nM and significant specificity. The recovery rate in bottled drinking water ranged from 91.19 % to 126.04 %, providing a portable and simple new method for on-site detection of residual lead ions in water environments.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109562"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel lateral flow assay for lead ion detection based on G-quadruplex\",\"authors\":\"Linjiao Ren , Jingtong Sun , Shilin Ma , Diankang Wang , Rubin Qi , Pei Zhang , Qingfang Zhang , Zirui Qin , Liying Jiang\",\"doi\":\"10.1016/j.bej.2024.109562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lead ion residues pose potential health risks to humans. To develop a cost-effective and user-friendly portable lead ion detection method, a novel lateral flow test strip was designed and fabricated based on the G-quadruplex structure. Initially, G4 and its complementary strand antiG4 are in a double-stranded form in the assay solution. After adding lead ions, these ions compete with antiG4 to bind to G4 and form G-quadruplex structures, thus releasing a large number of antiG4 single strands. Through base pairing, one end of the antiG4 was linked to a recognition element containing gold nanoparticles, while the other end was captured by a test line probe, resulting in a red band on the test line. The color change of the test line was positively correlated with the concentration of lead ions. Results showed that by observing the color change of the test line under optimized experimental conditions, lead ion concentration could be detected with a visual detection limit of 20 nM. Quantitative analysis using ImageJ software indicated that the test strip had a linear detection range of 10–2000 nM, with a detection limit of 7.32 nM and significant specificity. The recovery rate in bottled drinking water ranged from 91.19 % to 126.04 %, providing a portable and simple new method for on-site detection of residual lead ions in water environments.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"213 \",\"pages\":\"Article 109562\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003498\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003498","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A novel lateral flow assay for lead ion detection based on G-quadruplex
Lead ion residues pose potential health risks to humans. To develop a cost-effective and user-friendly portable lead ion detection method, a novel lateral flow test strip was designed and fabricated based on the G-quadruplex structure. Initially, G4 and its complementary strand antiG4 are in a double-stranded form in the assay solution. After adding lead ions, these ions compete with antiG4 to bind to G4 and form G-quadruplex structures, thus releasing a large number of antiG4 single strands. Through base pairing, one end of the antiG4 was linked to a recognition element containing gold nanoparticles, while the other end was captured by a test line probe, resulting in a red band on the test line. The color change of the test line was positively correlated with the concentration of lead ions. Results showed that by observing the color change of the test line under optimized experimental conditions, lead ion concentration could be detected with a visual detection limit of 20 nM. Quantitative analysis using ImageJ software indicated that the test strip had a linear detection range of 10–2000 nM, with a detection limit of 7.32 nM and significant specificity. The recovery rate in bottled drinking water ranged from 91.19 % to 126.04 %, providing a portable and simple new method for on-site detection of residual lead ions in water environments.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.