Min Gao , Yuan Shen , Yao Peng , Feiyang Tan , Yingshun Lv , Changjie Zhu , Yaxin Guo , Xuan Liu
{"title":"PVA-SA 固定化复合菌株胎儿阿利舍瓦氏菌和深层外杆菌降解吡啶的生物强化机制","authors":"Min Gao , Yuan Shen , Yao Peng , Feiyang Tan , Yingshun Lv , Changjie Zhu , Yaxin Guo , Xuan Liu","doi":"10.1016/j.bej.2024.109559","DOIUrl":null,"url":null,"abstract":"<div><div>Coal chemical wastewater (CCW) represents a type of recalcitrant organic wastewater characterized by its intricate composition and high concentration of pollutants, posing a severe threat to global aquatic environments and public health. This study focuses on the degradation of pyridine, a notoriously persistent organic pollutant in CCW, through the identification and application of two highly efficient pyridine-degrading bacterial strains: <em>Alishewanella fetalis</em> (Al-f3) and <em>Exiguobacterium profundum</em> (Ex-p). These strains were immobilized using a polyvinyl alcohol-sodium alginate (PVA-SA) matrix to investigate their bioaugmentation mechanisms in the pyridine degradation process. The findings indicate that strains Al-f3 and Ex-p achieved degradation rates of 95.94 % and 97.83 %, respectively, for an initial pyridine concentration of 200 mg/L at 96 hours. When strains Al-f3 and Ex-p were mixed in equal proportions and immobilized within PVA/SA beads, a degradation rate of 81.06 % was reached within 48 hours, with the efficiency increasing significantly by 96 hours. This enhancement is attributed primarily to the marked increase in enzymatic activity post-immobilization, achieving 17.13 μmol/mg·min, and the elevated secretion of extracellular proteins and polysaccharides, measured at 3.47 mg/L and 1.03 mg/L respectively within 48 hours. Notably, in the immobilized mixed culture system, the total organic carbon (TOC) was reduced to a mere 0.03 mg/L within 72 hours, with a removal rate of 92.31 %. These outcomes not only demonstrate the bioaugmentation role of the immobilized mixed strains in degrading pyridine but also offer novel solutions for the biodegradation of other organic contaminants in CCW, thereby enhancing the treatment efficiency of such wastewater. Given their large specific surface area and cost-effectiveness, PVA/SA immobilization matrices serve as efficient biocarriers in the biodegradation processes for treating CCW. This research provides innovative strategies and methods for the biotreatment of recalcitrant industrial wastewater.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109559"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioenhancement mechanism of PVA-SA immobilized composite strains Alishewanella fetalis and Exiguobacterium profundum in pyridine degradation\",\"authors\":\"Min Gao , Yuan Shen , Yao Peng , Feiyang Tan , Yingshun Lv , Changjie Zhu , Yaxin Guo , Xuan Liu\",\"doi\":\"10.1016/j.bej.2024.109559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coal chemical wastewater (CCW) represents a type of recalcitrant organic wastewater characterized by its intricate composition and high concentration of pollutants, posing a severe threat to global aquatic environments and public health. This study focuses on the degradation of pyridine, a notoriously persistent organic pollutant in CCW, through the identification and application of two highly efficient pyridine-degrading bacterial strains: <em>Alishewanella fetalis</em> (Al-f3) and <em>Exiguobacterium profundum</em> (Ex-p). These strains were immobilized using a polyvinyl alcohol-sodium alginate (PVA-SA) matrix to investigate their bioaugmentation mechanisms in the pyridine degradation process. The findings indicate that strains Al-f3 and Ex-p achieved degradation rates of 95.94 % and 97.83 %, respectively, for an initial pyridine concentration of 200 mg/L at 96 hours. When strains Al-f3 and Ex-p were mixed in equal proportions and immobilized within PVA/SA beads, a degradation rate of 81.06 % was reached within 48 hours, with the efficiency increasing significantly by 96 hours. This enhancement is attributed primarily to the marked increase in enzymatic activity post-immobilization, achieving 17.13 μmol/mg·min, and the elevated secretion of extracellular proteins and polysaccharides, measured at 3.47 mg/L and 1.03 mg/L respectively within 48 hours. Notably, in the immobilized mixed culture system, the total organic carbon (TOC) was reduced to a mere 0.03 mg/L within 72 hours, with a removal rate of 92.31 %. These outcomes not only demonstrate the bioaugmentation role of the immobilized mixed strains in degrading pyridine but also offer novel solutions for the biodegradation of other organic contaminants in CCW, thereby enhancing the treatment efficiency of such wastewater. Given their large specific surface area and cost-effectiveness, PVA/SA immobilization matrices serve as efficient biocarriers in the biodegradation processes for treating CCW. This research provides innovative strategies and methods for the biotreatment of recalcitrant industrial wastewater.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"213 \",\"pages\":\"Article 109559\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003462\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003462","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bioenhancement mechanism of PVA-SA immobilized composite strains Alishewanella fetalis and Exiguobacterium profundum in pyridine degradation
Coal chemical wastewater (CCW) represents a type of recalcitrant organic wastewater characterized by its intricate composition and high concentration of pollutants, posing a severe threat to global aquatic environments and public health. This study focuses on the degradation of pyridine, a notoriously persistent organic pollutant in CCW, through the identification and application of two highly efficient pyridine-degrading bacterial strains: Alishewanella fetalis (Al-f3) and Exiguobacterium profundum (Ex-p). These strains were immobilized using a polyvinyl alcohol-sodium alginate (PVA-SA) matrix to investigate their bioaugmentation mechanisms in the pyridine degradation process. The findings indicate that strains Al-f3 and Ex-p achieved degradation rates of 95.94 % and 97.83 %, respectively, for an initial pyridine concentration of 200 mg/L at 96 hours. When strains Al-f3 and Ex-p were mixed in equal proportions and immobilized within PVA/SA beads, a degradation rate of 81.06 % was reached within 48 hours, with the efficiency increasing significantly by 96 hours. This enhancement is attributed primarily to the marked increase in enzymatic activity post-immobilization, achieving 17.13 μmol/mg·min, and the elevated secretion of extracellular proteins and polysaccharides, measured at 3.47 mg/L and 1.03 mg/L respectively within 48 hours. Notably, in the immobilized mixed culture system, the total organic carbon (TOC) was reduced to a mere 0.03 mg/L within 72 hours, with a removal rate of 92.31 %. These outcomes not only demonstrate the bioaugmentation role of the immobilized mixed strains in degrading pyridine but also offer novel solutions for the biodegradation of other organic contaminants in CCW, thereby enhancing the treatment efficiency of such wastewater. Given their large specific surface area and cost-effectiveness, PVA/SA immobilization matrices serve as efficient biocarriers in the biodegradation processes for treating CCW. This research provides innovative strategies and methods for the biotreatment of recalcitrant industrial wastewater.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.