Melanie Schulz , Sanne Bleser , Manouk Groels , Dragan Bošnački , Jan A. Burger , Nicholas Chiorazzi , Carsten Marr
{"title":"伊布替尼作用下慢性淋巴细胞白血病细胞动力学的多室数学建模","authors":"Melanie Schulz , Sanne Bleser , Manouk Groels , Dragan Bošnački , Jan A. Burger , Nicholas Chiorazzi , Carsten Marr","doi":"10.1016/j.isci.2024.111242","DOIUrl":null,"url":null,"abstract":"<div><div>The Bruton tyrosine kinase inhibitor ibrutinib is an effective treatment for patients with chronic lymphocytic leukemia (CLL). While it rapidly reduces lymph node and spleen size, it initially increases the number of lymphocytes in the blood due to cell redistribution. A previously published mathematical model described and quantified those cell kinetics. Here, we propose an alternative mechanistic model that outperforms the previous model in 26 of 29 patients. Our model introduces constant subcompartments for healthy lymphocytes and benign tissue and treats spleen and lymph nodes as separate compartments. This three-compartment model (comprising blood, spleen, and lymph nodes) performed significantly better in patients without a mutation in the IGHV gene, indicating a diverse response to ibrutinib for cells residing in lymph nodes and spleen. Additionally, high ZAP-70 expression was linked to less cell death in the spleen. Overall, our study enhances understanding of CLL genetics and patient response to ibrutinib and provides a framework applicable to the study of similar drugs.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111242"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical multi-compartment modeling of chronic lymphocytic leukemia cell kinetics under ibrutinib\",\"authors\":\"Melanie Schulz , Sanne Bleser , Manouk Groels , Dragan Bošnački , Jan A. Burger , Nicholas Chiorazzi , Carsten Marr\",\"doi\":\"10.1016/j.isci.2024.111242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Bruton tyrosine kinase inhibitor ibrutinib is an effective treatment for patients with chronic lymphocytic leukemia (CLL). While it rapidly reduces lymph node and spleen size, it initially increases the number of lymphocytes in the blood due to cell redistribution. A previously published mathematical model described and quantified those cell kinetics. Here, we propose an alternative mechanistic model that outperforms the previous model in 26 of 29 patients. Our model introduces constant subcompartments for healthy lymphocytes and benign tissue and treats spleen and lymph nodes as separate compartments. This three-compartment model (comprising blood, spleen, and lymph nodes) performed significantly better in patients without a mutation in the IGHV gene, indicating a diverse response to ibrutinib for cells residing in lymph nodes and spleen. Additionally, high ZAP-70 expression was linked to less cell death in the spleen. Overall, our study enhances understanding of CLL genetics and patient response to ibrutinib and provides a framework applicable to the study of similar drugs.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"27 12\",\"pages\":\"Article 111242\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004224024672\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224024672","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mathematical multi-compartment modeling of chronic lymphocytic leukemia cell kinetics under ibrutinib
The Bruton tyrosine kinase inhibitor ibrutinib is an effective treatment for patients with chronic lymphocytic leukemia (CLL). While it rapidly reduces lymph node and spleen size, it initially increases the number of lymphocytes in the blood due to cell redistribution. A previously published mathematical model described and quantified those cell kinetics. Here, we propose an alternative mechanistic model that outperforms the previous model in 26 of 29 patients. Our model introduces constant subcompartments for healthy lymphocytes and benign tissue and treats spleen and lymph nodes as separate compartments. This three-compartment model (comprising blood, spleen, and lymph nodes) performed significantly better in patients without a mutation in the IGHV gene, indicating a diverse response to ibrutinib for cells residing in lymph nodes and spleen. Additionally, high ZAP-70 expression was linked to less cell death in the spleen. Overall, our study enhances understanding of CLL genetics and patient response to ibrutinib and provides a framework applicable to the study of similar drugs.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.